

GTD

Release Note

<u>4.9.3</u>

Applicable User's Manual: GTD 4.9.0

 \succ Fixed a bug on polar diagrams: low dB values were not in the right color.

<u>4.9.2P1</u>

Applicable User's Manual: GTD 4.9.0

No modification

4.9.2 Applicable User's Manual: GTD 4.9.0

No modification

<u>4.9.1</u>

Applicable User's Manual: GTD 4.9.0

Modifications

Far Field module

- Correction of the routine getting the reflected rays on cones
- \succ Improve the robustness of the function getting the reflected rays on antennas
- Correction of the routine getting the diffracted rays (rays impacting on the last part of the edge were missing)

All modules

Adapt tolerance parameter value to better capture the diffracted rays (some rays were missing on an Antenna defined with focal compared to an Antenna with focus).

<u>4.9.0</u>

Applicable User's Manual: GTD 4.9.0

New feature

GTD will automatically convert the generated PS files to PDF if a ps2pdf executable is defined in environment variable GTD_PS2PDF.

GTD

Ref

Release Note

4.8.3P1

Applicable User's Manual: GTD 4.5.2

Corrections

Bug fix in the SDS/HDF5 library (h5 close on Windows)

4.8.3 No Change. Applicable User's Manual: GTD 4.5.2

<u>4.8.0</u>

No Change. Applicable User's Manual: GTD 4.5.2

4.7.0

Far-Field results have been consolidated with the optimisation of curved interactions (multiple solution, correction of wrong double solution at 360° of a curved edge, improvement of multiple solutions management)

4.5.2

Major Updates

Beam management

> NEW FAR FIELD MODULE:

The Far Field Antenna Patterns are now included in the SYSTEMA-GTD package, including Theta / Phi cuts plots and Polar diagrams.

Minor Updates

New analytical (or semi-analytical) algorithms for path correction

Corrections

- Small error in diffraction coefficients
- Curvatures of diffracted field by curved edges not correct
- Diffraction local frame not always well oriented
- Diffraction edge normal of reflectors not well oriented

GTD

Release Note

<u>4.5.1</u>

First GTD V4 release

Based on the **Systema V4** framework, Astrium has developed an application for solving antenna's decoupling and evaluating the electromagnetism power on specific targets or apertures. Based on the General Theory of Diffraction (GTD), this tool uses a corrected forward ray-tracing technique which is particularly efficient for solving antennas - structure interactions in the high frequency domain.

The main features of Systema - GTD are:

- The GTD tool is able to model all main antennas currently used on satellites by several means. It offers a database of theoretical antennas (standard feeds, cardioids) and the import of custom profiles (Measured or Spherical Wave Expansion formats).
- The GTD tool consists of a complete radio-frequency prediction tool for large structure. It is used to propagate the electromagnetism field from the antenna sources to different points of interests such as:
 - o other antennas: to compute the decoupling between them
 - targets: to evaluate the incoming field and decoupling at a specific location
- The rays may undergo single or multiple interactions (reflection, diffraction) before they finally reach their final destination. In this version of the software a maximum of 2 interactions can be processed.
- > The can be displayed in several ways:
 - Mapping of field on a surface
 - Ray-path with filtering options
 - Decoupling between antennae

Besides a dedicated module called InCa is available to compute the field inside cavities. The goal is to assess the E-field inside the spacecraft cavity due to external antenna radiation and internal RF unit leakages. The method of computation is based on the Oversized Cavity Theory.