

Systema-Thermica European Space Thermal Engineering Workshop 2021

Presenters: A. Caugant – M. Lepilliez Contributors: G. Capblancq, L. Galeron, C. Bayeux, D. Cayrol-Midan

12th-14th of October, 2021

Overview

4.5.3b

4.8.3P3

4.9.1

- Systema Thermica 4.8.3P3 on May 2021:
 - **Bugfix on Thermisol** -
- Systema Thermica 4.9.1 Sept. 2021:
 - The main effort has been put on performances & optimisations -
 - Minor improvements on Thermica & Thermisol -
- User Interface / Connecting with other softwares
 - Step-TAS improvements -
 - New 3D ergonomic features -
 - Improvement of the Python library -

	· · · · · · · · · · · · · · · · · · ·	
Mapping		
Filter	No Filter	
Color type	Viridis	
 Dynamic scale 		
Compute the bound	s from values	
Min Value	Max Value	
0	59.4914412269655	
Logarithmic scale		
Out of color map of	olors or valuesNone values	_

Systema

Python API improvements

Since Systema 4.5, the Systema Python API has been continously improved as demonstrated in the previous ESTEW presentation.

- In Systema 4.9.0, a big effort has been made to enrich the Python API to grant:
 - The access to Orekit methods
 - The management of any kind of kinematics laws
 - The management of variables

The Python API provides now a very complete and powerful way to :

- Add your own functionnalities to Systema and enrich the graphical user interface
- · Integrate Systema to your own tools suite

New methods are available in the Python API to:

- Determine if an application property is overloaded or not
- Create a single computation point in a mission file
- · Create a set of sequence intervals in a mission file

[Ctrl or Alt + Return : line jump

Within the framework of a joint work between ESA and our team, we had the opportunity to improve the STEP-TAS/Systema interface. In the previous versions, some features such as:

- The validation check at import and export with dedicated error messages
- The support of new shapes such as antenna with focal
- The possibility to import and export irregular meshing
- And finally there is now an automatic fix of the coplanarity of exported quadrangles

In the 4.9.1 version, complementary features have been added:

- Import/export of the bulk properties including activity
- Import/export of the transverse properties of materials
- Import/export of the radiative enclosures
- Export of 4,5 and 6 faces boxes as boxes
- Issue when exporting 4 points truncated sphere
- Avoid creating multiple materials with the same properties on export
- Improvement of infinite solid by plane cutters management

Performances

- Number of Thermal Nodes : 25.174
- Number of GL : 54.602
- Number of GR : 5.904.564
- Number of GF : 530

4.9.0	4.9.1
170s	6s

Performances

- Number of Thermal Nodes : 25.174
- Number of GL : 54.602
- Number of GR : 5.904.564
- Number of GF : 530

4.9.0	4.9.1
420s	277s

Performances

- Number of Thermal Nodes : 25.174
- Number of GL : 54.602
- Number of GR : 5.904.564
- Number of GF : 530

4.9.0	4.9.1
5s	0.48s

Performances

- Number of Thermal Nodes : 25.174
- Number of GL : 54.602
- Number of GR : 5.904.564
- Number of GF : 530

4.9.0	4.9.1
119s	18.7s

Performances

Systema 4.9.1 main objective has been to work on performance when using the software. The test case here is done with the following inputs :

- Number of Thermal Nodes : 25.174
- Number of GL : 54.602
- Number of GR : 5.904.564
- Number of GF : 530

4.9.0 4.9.1 1 826mn 919mn

Performances

AIRBUS

Systema 4.9.1 main objective has been to work on performance when using the software. The test case here is done with the following inputs :

- Number of Thermal Nodes : 25.174
- Number of GL : 54.602
- Number of GR : 5.904.564
- Number of GF : 530

4.9.0 4.9.1 1 220s 18s

*Doing symmetry with script on star trackers with meshing

Deployment of modelling best practices with Systema

Systema

Objectives & motivations

- Emphasis on model quality to:
 - Increase software performances
 - Facilitate model updatability and re-use
 - Enable easy model exchanges (format conversion)
 - Control results accuracy/computation duration balance

JUICE and MSR-ERO spacecraft views

13

- Ongoing major projects involving many actors contributing to the spacecraft thermal model (JUICE, MSR-ERO, ...)
- Increase in satellite complexity and model size
- Growing direct re-use of the design model
- Need for data continuity, traceability and automation

Design model re-use diversification

Best practices deployment

- Sources:
 - ESA ECSS Thermal Analysis Handbook (public)
 - Software providers user guides (public)
 - Company thermal analysis process (internal)

- Examples:
 - <u>Generic</u>: Model updates should be tracked with a software configuration tool (e.g. subversion, git, ...)
 - <u>Tool dependent (Systema)</u>: Do not use the simplified RCN conduction with cutters
 - <u>Recommended checks</u>: Internal cavity nodes shall not have no direct couplings to space
 - ...
- Difficulties:
 - Very frequent model updates but reduced time allocated to model reviews
 - Guidelines to be adapted to the projects and associated tools (Systema, ESATAN, NX, ...)
 - Difficult knowledge management on modelling tools (external stakeholders, people turnover, ...)
- \rightarrow Use continuous integration tools to apply best practices:

- Git is a version control software tracking changes in files. It is:
 - Open-source and cross-platform
 - Decentralized and flexible
 - Well tested (since 2005), optimized and integrated to other tools
 - The official version control tool at Airbus
- Using Git for thermal modelling:
 - Facilitates concurrent modelling with its branching/merge capability
 - Provides a model updates history with dates and usernames
 - Users can reach previous model versions at any time, enabling analysis folder cleaning and archiving

Evolutions of model states as depicted in Git

Update MZ design and PMU radiator stiffeners.	Antoine Caugant	5 months ago
Update battery modelling (radiator is mm thick instead of mm).	Antoine Caugant	5 months ago
Update PPS model and associated Qi/Qr	Antoine Caugant	5 months ago
Regenerate dissipations with new battery values (BOL/EOL).	Antoine Caugant	5 months ago
Update the PPU hk to fit the CAD baseplate cuttouts.	Antoine Caugant	7 months ago
Move PPU TM to wall node close to new TRP	Antoine Caugant	7 months ago

Example of thermal model Git tree

Continuous integration with

- GitLab is a web-tool integrating:
 - A central Git server
 - Online peer review tools
 - Integrations with other tools like Jira
 - Jobs automation through pipelines

GitLab central server

GitLab pipeline thermal example

- Using GitLab for thermal analysis:
 - Centralize model updates in a generic common space
 - Automatically links model updates and Jira tickets
 - Automate execution of runs, checks, metrics generation and postprocessing through pipelines

Use case: MSR-ERO PDR model

- Applying continuous integration enabled the detection of:
 - Important number of surfaces (>30,000)
 - Meshing condensation multiple definitions
 - Meshing opening/edition/saving time above average
 - 40 unused materials
 - ...
- Proposed actions:
 - Using a more recent version of Systema (4.9.1) reduced:
 - ✓ Meshing opening time by 30%
 - ✓ Model edition time by 90%
 - ✓ Meshing saving time on a Network drive by 80%
 - Rationalization of meshing condensation reduced SYSMSH size by 20%
 - Unused materials were deleted for more clarity
 - Reduction of some structural elements was recommended for next phases

MSR-ERO thermal meshing

Clear interest demonstration of the methodology

—

. . .

The future of Systema

Systema V5

Survey results :

- Around 50 to 60 answers throughout the entire survey
- Participants from : ADS, OHB, Swedish Institute of technology, Epsilon, Sodern, ArianeGroup, Aerospacelab, Hemeria, and resellers.
- 50% are daily users of the software
- 75% are using LTS version 4.8.3P and only 30% the latest version.
- Over 90% of users are interfacing with other disciplines for Model Exchange (mainly Mechanical and Power).
- Systema is well embedded in internal processes

- Data Management
- Performance
- CAD management
- Meshing capabilities/control
- Analysis automation
- Automatic reporting

Conclusion

- Systema LTS V4.8.3P3 and Systema V4.9.1 are now available for download.
- Main improvements concern the performance and user experience.
- Better Step-TAS compatibility and a richer Python API
- The best practices approach seems to show interesting benefits
- It is still in an early development phase at Airbus
- Interest to share with the community
- Systema V4.9.2 to be exptected for next year (Thermica oriented).
- Systema V5 definition is on-going.

Keep in touch

• Visit our website: www.systema.airbusdefenceandspace.com

- Visit our linkedIn: <u>www.linkedin.com/company/systema4</u>
- Contact us by e-mail: <u>engineering.software@airbus.com</u>
- Use the hotline service: +33 (0)5 31 96 80 00

Thanks for attention!