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1. Problem statement 
A fundamental tool in aircraft aerodynamic design are Computational Fluid Dynamics (CFD) simulations, from 

which the flow behavior around the aircraft and the aerodynamic forces acting its surfaces are retrieved. 

These calculations are computationally expensive, making the quest of highly efficient CFD algorithms a 

permanently open question for researchers. 

This problem aims at exploring and providing some ideas about how Quantum Computing (QC) algorithms 

should be applied to solving CFD problems. In particular, it is requested to implement a quantum-hybrid 

solution in which one or some parts of an existing CFD solver (in this case SU2 [7]) are replaced by QC-

based algorithms. 

The case study considered in the transonic flow around a NACA 0012 airfoil. This problem is fully 

representative of those usually addressed in aerodynamic design and features complex flow phenomena that 

must be correctly predicted by the CFD solver. For the shake of simplicity, the flow will be assumed to be 2-

D, inviscid and steady. 

2. Problem Formulation 
Under the assumptions of 2-D, inviscid and steady flow, the Navier-Stokes equation describing the motion of 

the fluid reduce to the so-called Euler equations. These equations are a system of partial differential equations 

(PDE) for which the unknowns are the density 𝜌, the momentum 𝜌𝑉 = (𝜌𝑢, 𝜌𝑣) and the total entalphy ℎ𝑡. The 

equations then read: 
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𝜕ℎ𝑡

𝜕𝑥
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𝜕𝑦
= 0 (4) 

 

These equations are complemented by the definition of the stagnation enthalpy and the equation of state 

(where 𝑐𝑝 = 1005
𝐽

𝐾𝑔⋅𝐾
 and 𝑅 = 287

𝐽

𝐾𝑔⋅𝐾
 are constants for the air and 𝑇 stands for the temperature): 

 

ℎ𝑡 = 𝑐𝑝𝑇 +
1

2
|𝑉|2 (5) 

 

 

𝑃 = 𝜌𝑅𝑇 (6) 
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The definition of the Mach number 𝑀 is also reminded, which is a measure of the compressibility of the flow 

(with 𝛾 = 1.4 for the air): 

 

𝑀 =
|𝑉|

√𝛾𝑅𝑇
 (7) 

 

This system of PDE is has to be solved along with its boundary conditions. The two fundamental types of 

boundary conditions that might be considered for the use case proposed here are the following: 

 Far field conditions. Sufficiently far from the object, all flow variables should be uniform.  

 Solid wall conditions. For the inviscid case treated here, in the walls delimiting the object the velocity 

component parallel to the local normal vector to the surface has to be zero. This condition means that 

the flow cannot penetrate the obstacle.  

 

3. Reference CFD approach 
This section provides an introduction to the standard algorithms that are implemented in CFD solvers used 

in industry and research. 

3.1 Elements of CFD 

Starting from a mathematical model, in this case the Euler equations 1-4, the following elements have to be 

defined [2]:  

 Numerical grid. The grid or mesh is the discrete representation of the spatial continuous domain in 

which the problem is to be solved. Each spatial point considered is a node, and the volume delimited 

by a set of adjacent nodes defines a cell. In the case of structured grids, in which each node and cell 

is uniquely identified by a set of indices, (𝑖, 𝑗) in the 2-D case. Unstructured grids are generally 

composed of tetrahedral elements and require a list of the connectivity which specifies the way a given 

set of nodes make up a cell. 

 

 Discretization method. The standard approach to solve the fluid dynamic equations shown above is 

the Finite Volume Method (FVM). This method considers the local volume associated to each cell of 

the mesh and applies and integral conservation law. Such law basically states that the variation of 

any quantity 𝜙 inside a volume Ω only depends on the  

 

 

 

 

 

 

 

 

 

Figure  1: 2-D structured mesh with indexed nodes 
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fluxes 𝐹 across its surfaces 𝑆. FVM allows automatically satisfying the conservative nature of the fluid 

mechanics equation. This equation of conservation can be writen as follows: 

 
𝜕

𝜕𝑡
∫Ω 𝜙𝑑Ω + ∮𝑆 𝐹𝑑𝑆 = 0                                                                                                                                  (8) 

        

 Numerical schemes. Following the discretization of the domain, the mathematical operators of the 

equations to be solved have to be discretized as well. This approximation of the equations is achieved 

by the numerical schemes. Two types of schemes are considered: the time integration schemes and 

the spatial schemes. The time integration schemes allow modeling the time evolution of the variables 

to be solved, while the spatial schemes represent the spatial gradients of those variables. 

 Solution method. Once the discrete problem and the numerical schemes are set up, a system of 

algebraic equations has to be solved. Depending on the nature of the schemes, an iterative method 

might be needed. In such case, methods for solving linear systems of the form 𝒜𝑥 = 𝑏 are used. 

 

3.2  FVM and numerical schemes 

The conservation law in equation 8 has to be first writen in the discrete domain. The time dependent term is 

transformed by computing a cell-averaged value of the variable, �̅�, that is subsequently attributed to the cell 

geometric center. The fluxes across the cell boundaries are approximated as the sum over the cell faces of 

the numerical flux, that is itself the discrete representation of the physical flux. The discrete version of the 

conservation law reads [3]: 

 
𝑑

𝑑𝑡
[�̅�𝑖,𝑗Ω𝑖,𝑗] = −∑ 𝐹∗Δ𝑆 = −𝑅𝑖,𝑗 (9) 

 

The numerical flux 𝐹∗ is determined by means of a spatial numerical scheme presented in section 3.2.1. The 

balance of fluxes over all the domain cells allow calculating the residual 𝑅 that will subsequently be used to 

perform the time marching. For this purpose, the left hand side term is approximated by means of a time 

integration scheme, presented in section 3.2.2. In both cases a structured mesh is assumed for simplicity. 

3.2.1 Spatial numerical scheme 

The role of the spatial numerical scheme is to determine the numerical flux 𝑭∗ of equation 9 at a given time 

instant. For this purpose, a cell-centered approach is presented here as shown in figure 2. From a set of 

nodes (A,B,C,D,...) forming the grid with known coordinates, the coordinates of the (i,j)-cell center, its face 

normals and its volume can be defined for the 2-D case as [3]: 

 

 

𝑥𝑖,𝑗 =
1

4
(𝑥𝐴 + 𝑥𝐵 + 𝑥𝐶 + 𝑥𝐷) (10) 

 

 

Δ𝑆𝑖+1/2,𝑗 = (𝑦𝐵 − 𝑦𝐴)1𝑥 − (𝑥𝐵 − 𝑥𝐴)1𝑦 (11) 

𝑓𝑎𝑐𝑒𝑠 
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Ω𝑖,𝑗 =
1

2
[(𝑥𝐶 − 𝑥𝐴)(𝑦𝐷 − 𝑦𝐵) − (𝑥𝐷 − 𝑥𝐵)(𝑦𝐶 − 𝑦𝐴)] (12) 

 

   

 

 

Once this geometric information is available, the numerical flux can be computed. Among the wide range of 

numerical schemes used in CFD, one of the most frequently used is the centered second-order Jameson 

scheme [4]. The scheme reads: 

 

 𝑭𝑖+1/2,𝑗
∗ =

1

2
(𝐹𝑖,𝑗 + 𝐹𝑖+1,𝑗) + 𝛽𝑖+1/2,𝑗(𝜙𝑖+1,𝑗 − 𝜙𝑖,𝑗) − 𝛾𝑖+1/2,𝑗(𝜙𝑖+2,𝑗 − 3𝜙𝑖+1,𝑗 + 3𝜙𝑖,𝑗 − 𝜙𝑖−1,𝑗) (13) 

 

The first term of 13 is the centered approximation of the flux. In order to ensure the stability of the scheme, 

the second and third right hand side terms in 13 are added representing an artificial viscosity. These term are 

calculated as follows: 

 

𝛽𝑖+1/2,𝑗 = −
1

2
𝜅(2)[𝑣Δ𝑆 + 𝑐Δ|𝑆|]𝑖+1/2,𝑗 (14) 

 

𝛾𝑖+1/2,𝑗 =
1

2
𝜅(4)[𝑣Δ𝑆 + 𝑐Δ|𝑆|]𝑖+1/2,𝑗 (15) 

 

Figure  2: Cell-centered approach from [3] 

 



 

5    www.airbus.com/qc-challenge.html 

AIRBUS QUANTUM 

COMPUTING CHALLENGE 

Where 𝜅(2) and 𝜅(4) stand for coefficients of dissipation that can be tuned by the user. Typical value 

considered are 𝜅(2) = 0.5 and 𝜅(4) = 1/64. 

With these elements, for each cell the flux shall be computed for each of its faces. Then, a balance of flux 

can be performed for each cell so as to compute the residual appearing in the right hand side of 9. Special 

attention must be paid to the cells in the boundaries of the domain, that have to fulfill the prescribed boundary 

conditions. 

3.2.2 Time integration  

Even for steady problems, the steady state solution is usually searched by solving the time-dependent version 

of the equations so that their hyperbolic nature is kept (pseudo-time marching). It is therefore necessary to 

introduce a time integration scheme. Schemes can be classified into 𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡 and 𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡, depending whether 

the right hand side of equation 9 is evaluated on the current known time instant or the next one. To illustrate 

this, let us consider the first order Euler scheme in its two versions: 

 

�̅�𝑖,𝑗
𝑛+1−�̅�𝑖,𝑗

𝑛

Δ𝑡
=

1

Ω𝑖,𝑗
𝑅𝑖,𝑗
𝑛  (16) 

 
�̅�𝑖,𝑗
𝑛+1−�̅�𝑖,𝑗

𝑛

Δ𝑡
=

1

Ω𝑖,𝑗
𝑅𝑖,𝑗
𝑛+1 (17) 

 

Where 𝜙 represents any flow variable, 𝑛 is the pseudo-time step and 𝑅 is the residual resulting from the flux 

balance. Equation 16 is the explicit formulation while equation 17 is the implicit one. 

Explicit schemes (equation 16) have to respect a condition in order to be stable. This is the CFL condition, 

that states that 𝐶𝐹𝐿 ≤ 1 for the scheme to converge. On the other hand, explicit schemes are computationally 

cheap as the calculation of the next step solution is straightforward. Implicit schemes unconditionally stable 

but the computation of the next step requires to solve a linear system 𝒜Φ = 𝑅, where 𝒜 is a sparse matrix 

resulting from the numerical schemes that has to be inverted. The inversion of this matrix is computationally 

expensive and requires an iterative method to be implemented. 

In the particular case of steady simulation, the local time stepping technique can be used. It consists of 

adapting the time step Δ𝑡 to the cell size and its local conditions so that the CFL number constraint is locally 

respected. As a consequence, the time consistency of the transients solutions is lost as each cell has its own 

time step, which is irrelevant since only the steady state solution is of interest. The local time is computed as 

follows [3]: 

 

Δ𝑡𝑖,𝑗 ≤ 𝐶𝐹𝐿
Ω𝑖,𝑗

|(𝑣+𝑐)𝑖,𝑗Δ𝑆𝑖|+|(𝑣+𝑐)𝑖,𝑗Δ𝑆𝑗|
 (18) 

 

With 

Δ𝑆𝑖 =
1

2
(𝑆𝑖+1/2,𝑗 + 𝑆𝑖−1/2,𝑗) (19) 

 

Δ𝑆𝑗 =
1

2
(𝑆𝑖,𝑗+1/2 + 𝑆𝑖,𝑗−1/2) (20) 
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3.2.3 Initial and boundary conditions 

Unless a better guess of the final solution is available (for instance the result of a previous calculation with 

similar boundary conditions), the initial solution is typically taken as an uniform flow over the complete domain, 

with the variables taking the value of those specified in the inlet boundary conditions. 

The boundary conditions specify the values of the flow variables at the domain boundaries. Two of the most 

common boundary conditions were introduced in section 2. 

3.2.4 Solution method: iterative methods 

As previously stated, if the time integration method is chosen to be implicit, then an iterative method has to 

be implemented for time marching. Among the most widely used are the Jacobi method, LU method or 

GMRES method [3]. 

4. Quantum approach to CFD 

The goal of this problem statement is to explore how quantum computing can be applied to a CFD solver by 

means of implementing a quantum-hybrid algorithm. 

The quantum-hybrid approach consists in replacing one or several modules of a standard CFD solver (an 

overview of such modules was provided in section 3) by a QC-based algorithm. The CFD solver to be used 

is the open-source SU2 code, described in section 5.1. 

The tasks to be carried out are: 

  

1. Identify which modules of the standard CFD solvers might be replaced by a QC-based algorithm, 

taking into account the potential computational gains that the algorithm would bring with respect to 

the standard algorithm.  

2. Develop such algorithm.  

3. Provide a mapping of the algorithm to the number of qubits required to run it using QC hardware.  

4. Provide an estimation of the evolution of the computational time required to run the algorithm when 

the problem size increases (i.e., the number of cells contained in the mesh).  

 

The application case to eventually demonstrate the proposed quantum-hybrid solution is the transonic flow 

around the NACA 0012 airfoil, presented in section 5.2. 
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5. Quantum-hybrid CFD solver 

5.1  SU2 solver for quantum-hybrid approach 

The CFD solver for building a quantum-hybrid approach is the SU2 code [7]. SU2 is an open-source, free 

software written in C++ and Python for solving PDE such as the fluid dynamic equations in unstructured mesh 

topologies. The code structure follows a modular approach, allowing to replace parts of the code by external 

algorithms. The repository of the code and a detailed explanation of its structure can be found in 

ℎ𝑡𝑡𝑝𝑠://𝑔𝑖𝑡ℎ𝑢𝑏. 𝑐𝑜𝑚/𝑠𝑢2𝑐𝑜𝑑𝑒/𝑆𝑈2 and ℎ𝑡𝑡𝑝𝑠://𝑠𝑢2𝑐𝑜𝑑𝑒. 𝑔𝑖𝑡ℎ𝑢𝑏. 𝑖𝑜/. 

The repository also provides all the necessary input files to compute the flow around a NACA 0012 profile in 

transonic regime: ℎ𝑡𝑡𝑝𝑠://𝑠𝑢2𝑐𝑜𝑑𝑒. 𝑔𝑖𝑡ℎ𝑢𝑏. 𝑖𝑜/𝑑𝑜𝑐𝑠/𝑄𝑢𝑖𝑐𝑘 − 𝑆𝑡𝑎𝑟𝑡/. A description of this problem is 

presented in the following section. 

5.2  Application: Transonic flow around the NACA 0012 airfoil 

The NACA 0012 airfoil is a symmetric aerodynamic profile frequently used in the assessment of CFD 

algorithms and models. The hypothesis of 2-D, steady and inviscid flow are applied. A transonic upstream 

Mach number will be considered, leading to supersonic regions and the eventual presence of shock waves. 

The airfoil is placed in an uniform upstream flow with a non-zero angle of attack. 

 

 

   

 

 

In this application we aim to solve the Euler equations considering an angle of attack of 𝛼 = 1.25𝑑𝑒𝑔, and 

freestream uniform conditions of 𝑃∞ = 101325𝑃𝑎, 𝑇∞ = 273.15𝐾 and 𝑀∞ = 0.8 (suffix ∞ standing for 

freestream). The walls are modeled as inviscid. 

In addition to the reference solution that can be obtained by running the SU2 code files for this case, results 

obtained using the CFD solver elsA [5] are provided hereafter in a mesh featuring 65000 cells. Fluxes were 

treated using the Jameson scheme with coefficients 𝜅(2) = 0.5 𝜅(4) = 1/64. An implicit pseudo-time 

integration scheme was used with 𝐶𝐹𝐿 = 10 and local time stepping, using the LU-SSOR algorithm. The 

Figure  3: NACA 0012 airfoil in transonic regime 
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steady-stage solution was reached after 10000 iterations. Turnaround time with 4 processors in a High 

Performance Computing facility was around 430 seconds. Figure 6 shows the contours of non-dimensional 

static pressure 𝑃/𝑃908 and the coefficient of pressure distribution over the airfoil surface defined as: 

 

 

 

 

𝐶𝑝(𝑥/𝑐) =
𝑃(𝑥/𝑐)−𝑃∞
1

2
𝜌∞𝑢∞

2
                                                                                                                                    (21) 

 

With 𝑥 being the chord-wise coordinate and 𝑐 the chord of the airfoil. 

Both the 𝐶𝑝 curve and the pressure contours show the presence of a shock wave in the upper part of the 

airfoil, consisting in an abrupt change of the flow variables. In this context, CFD simulations are meant to 

provide the location and strength of this flow phenomenon with accuracy. 

 

6. KPI 
The assessment of the proposed algorithms will be based on the following criteria: 

1. Problem decomposition. The choice of the SU2 solver modules that are to be replaced by QC-based 

algorithms.  

2. Algorithm mapping. The QC hardware resources (number of qubits) required by the proposed QC-

based algorithm for a given problem size (number of mesh cells). 

3. Algorithm scalability. The evolution of the computational time required to run the QC-based 

algorithm with respect to the problem size (number of mesh cells).  

The algorithm that provides the best performances based on these criteria will used to create a SU2-based 

quantum-hybrid solver and demonstrated in the solution of the transonic flow around the NACA 0012 profile 

using QC hardware. 

 

(b) Pressure contours, 𝑃/𝑃∞ (a) Cp curve 

Figure 4: Pressure distribution over the NACA 0012 
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