SurRender software
Technical features

The current version of the software is SurRender 6.0. The SurRender software is used through a client-server mode: SurRender’s main application runs a server. The SurRender server can be located on the same computer as the client, or on a remote computer (possibly a cloud). The server receives commands from the client through a TCP/IP link, and sends the resulting image back.

The SurRender client is provided to the user as a unified API for many languages. Especially, one can call SurRender from Lua, C++11, MATLAB (with or without Simulink) or Python 3.

SurRender supports a great variety of scene configurations. A schematic of the scene components is shown in the next figure. SurRender capabilities are presented in more details in a dedicated article available online. In the table below, we summarize SurRender main technical features.

Input and Output

<table>
<thead>
<tr>
<th>Planets, Moons, Asteroids</th>
<th>3D model (satellites, spacecraft)</th>
<th>Sun Stars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metadata</td>
<td>Sensor model</td>
<td></td>
</tr>
</tbody>
</table>

SurRender

<table>
<thead>
<tr>
<th>Radiance</th>
<th>Nb of photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image</td>
<td>Depth map</td>
</tr>
</tbody>
</table>
SurRender software: technical features

Software
- Linux or Windows
- Client-server protocol (TCP/IP)
- Multiple interfaces: Python 3, MATLAB/Simulink, C++, Lua
- Hardware in the loop
- Cloud computing

Rendering
- Raytracing (CPU): physically accurate
- OpenGL (GPU): real-time
- Highly efficient simulation of sparse scenes (space environment)
- Highly optimized to handle a wide range of resolutions and detail levels

The raytracer implements the physical principles of light propagation

Supported data
- Digital Elevation Model (DEM), Textures, albedo maps
- JPG, TIF, PNG, …
- NASA PDS data format
- Giant textures (up to 256 TB)
- Procedural texture/DEM generator (fractal)
- 3D meshes (OBJ, 3DS, PLY, Collada, …)

SurRender handles data at Solar System scales, from millions of kilometers to sub-meter distances

Objects
- Artificial objects: 3D mesh models (satellites, robotic spacecrafts)
- Planets, asteroids, moons: analytical shapes
- Very high-res planet-wide DEMs
- Sun, star background
- Custom shapes

Solar System objects are stored in memory much more efficiently than meshes

Image acquisition
- Images rendered in physical units (W/m²)
- Slope maps, depth maps
- Various projection models & distortions (pinhole, fisheye, orthographic)
- PSF, variable PSF in the FOV.
- Achromatism, defocus
- Acquisition modes (sampling): global shutter, push-broom, snapshot
- Windowing (variable integration time in the pixels)

The raytracer design simulates the sensors working principle at physical level (photons)

Models
- Embedded modelling language SuMoL (with dedicated editor)
- Analytical or numerical models can be implemented at will
- BRDF, projection, sensors, geometrical objects, etc.

Sensors
- Sensor models: generic sensor, HAS2, HAS3, JUICE/NAVCAM
- Various effects: integration time, readout noise, photon noise, dark current, transmission, gain, quantum efficiency, pupil diameter, motion blur
- Active sensors: LIDAR, time-of-flight cameras (with light spots, lasers)
- Optical (B&W, RGB, multispectral) or infrared (no thermal model yet)
- Spectrum and bandwidth

BRDF
- Lambertian (mate surfaces)
- Mirror
- Hapke (Moon/asteroid surfaces, regolith)
- Oren-Nayar (mate)
- Phong (plastic, MLI)
- Custom models

Notable effects
- Geometrically correct reflections & shadows
- Eclipses, soft shadows
- Blooming
- Secondary illuminations
- Continuous simulation over large distance range (from millions of km to sub-meter scales)
- Simulates motions, including detector motions (push-broom, rolling-shutter, micro-vibrations, …)
- Subpixel accuracy