SUBJECT: GENERAL

Aid to introduction of a Safety Management System (SMS) - Operational risk management methodology provided by EUROCOPTER

Comment: This Information Notice (IN) is mainly intended for the managers of Safety Management Systems, for Flight Safety Officers, Maintenance Managers, Managers of In-Flight Operations and more generally for any person participating in the introduction of a Safety Management System.

For the attention of

<table>
<thead>
<tr>
<th>AIRCRAFT CONCERNED</th>
<th>Version(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Civil</td>
</tr>
<tr>
<td>EC120</td>
<td>B</td>
</tr>
<tr>
<td>AS350</td>
<td>B, BA, BB, B1, B2, B3, D</td>
</tr>
<tr>
<td>AS550</td>
<td>A2, C2, C3, U2</td>
</tr>
<tr>
<td>AS555</td>
<td>E, F, F1, F2, N, NP</td>
</tr>
<tr>
<td>AS555</td>
<td>AF, AN, SN, UF, UN</td>
</tr>
<tr>
<td>EC130</td>
<td>B4, T2</td>
</tr>
<tr>
<td>SA365 / AS365</td>
<td>C, C1, C2, C3, N, N1, N2, N3</td>
</tr>
<tr>
<td>AS565</td>
<td>MA, MB, SA, SB, UB</td>
</tr>
<tr>
<td>SA366</td>
<td>G1</td>
</tr>
<tr>
<td>EC155</td>
<td>B, B1</td>
</tr>
<tr>
<td>SA330</td>
<td>J</td>
</tr>
<tr>
<td>SA341</td>
<td>G</td>
</tr>
<tr>
<td>SA342</td>
<td>J</td>
</tr>
<tr>
<td>ALOUETTE II</td>
<td>313B, 3130, 318B, 318C, 3180, 3180B, 3180C</td>
</tr>
<tr>
<td>ALOUETTE III</td>
<td>316B, 316C, 3160, 319B</td>
</tr>
<tr>
<td>LAMA</td>
<td>315B</td>
</tr>
<tr>
<td>EC225</td>
<td>LP</td>
</tr>
<tr>
<td>EC725</td>
<td>AP</td>
</tr>
<tr>
<td>AS332</td>
<td>C, C1, L, L1, L2</td>
</tr>
<tr>
<td>AS532</td>
<td>A2, U2, AC, AL, SC, UE, UL</td>
</tr>
<tr>
<td>MBB-BK117</td>
<td>A-1, A-3, A-4, B-1, B-2, C-1, C-2</td>
</tr>
<tr>
<td>EC135</td>
<td>T1, T2, T2+, P1, P2, P2+, 635 T1, 635 T2+, 635 P2+</td>
</tr>
</tbody>
</table>
Improving global flight safety is the top priority for EUROCOPTER. On this account, EUROCOPTER is fully involved in the work of IHST (International Helicopter Safety Team) who aims at reducing the helicopter accident rate worldwide by 80% by the year 2016.

One of IHST’s and EUROCOPTER’s main recommendations to the operators is to introduce a SMS. The principles described below come as a supplement to the “SMS Toolkit”, which can be downloaded on the IHST website (http://www.ihst.org) and EHEST website (http://www.easa.europa.eu/essi/ehest/), and to the documentation on this subject issued by the Aviation Authorities.

EUROCOPTER would like to make you aware of the importance of hazard identification and risk management which are the core of any safety risk management system and proposes you in this Information Notice a methodology for dealing with this subject.

This methodology will enable you to:
- Draw up a list of generic and specific hazards encountered during your daily activity.
- Identify and qualify potential repercussions of these hazards on your activity.
- Define corrective and protective measures in order to prevent such hazards and eliminate or mitigate their consequences.

1 - Scope:

This notice is more particularly dedicated to Commercial Air Transportation, but can generically be used for aerial work, aerial emergency missions, training or general aviation flights, and generally for every activity associated with operations in flight or on the ground.

2 - Glossary:

ASR: Air Safety Report
CAA: Civil Aviation Authority
CFIT: Controlled Flight Into Terrain
EASA: European Aviation Safety Agency
ICAO: International Civil Aviation Organization
EHEST: European Helicopter Safety Team
UE: Undesirable Event
EU: Ultimate Event (accident)
IHST: International Helicopter Safety Team
SSP: State Safety Program

3 - Definitions:

Safety:
Situation in which the risks of personal injury or material damage are limited to an acceptable level and are maintained at this level or a lower level due to the continued hazard identification and risk management process (ICAO SMS Manual Doc 9859).

Safety culture: The following definition was proposed by Dr. James Reason in 1997 to define Safety culture: Safety culture comprises “fairness”, interchange of information, and learning from events which occurred in the past. A “fair” culture is a culture that establishes an atmosphere of trust in which personnel is encouraged (or even rewarded) to provide information essential to safety, and where the limit between an acceptable and unacceptable behavior is clearly set.
Air accident (ICAO Appendix 13):
Event related to aircraft operation, which occurs between the time a person boards the aircraft with the intention of performing a flight and the moment when all the persons having boarded the aircraft with this intention, have disembarked, and during which:

a) A person is fatally or seriously injured because the person is:
- in the aircraft, or
- in direct contact with any part of the aircraft, including parts which have become detached, or
- directly exposed to engine jet wash, unless the injuries are due to natural causes, injuries caused by the person himself or by other persons, or injuries sustained by a stowaway hidden outside the passenger and flight crew access areas, or

b) The aircraft sustains damage or a structural failure:
- altering its structural strength, its performance or flight characteristics, and
- normally requiring a substantial repair or the replacement of the damaged component, except for an engine failure or engine fault if the damage is limited to the engine, the engine cowlings or engine accessories, or damage limited to the propellers, the wing tips, the antennas, the tires, the brakes, the fairings or to small notches or perforation of the skin, or

c) The aircraft has disappeared or is completely inaccessible:

Incident:
An incident is defined in this document as an event, other than an accident associated with aircraft preparation or operation, which would or could affect the safety of aerial operations. An Undesirable Event is considered as an in-flight incident which may be caused by technical, organizational or operational occurrences.

Undesirable Event:
Also called forerunner event, an Undesirable Event identifies any deviation from what is expected and may cause personal injury or material damage. This event can be defined as a loss of control of the situation, i.e., any event which may give rise to an accidental sequence if no efficient recovery action is taken. Consequently, the Undesirable Event behaves like a signal whose systemic analysis makes it possible to improve the risk prevention mechanisms of the organization.

Hazard:
A condition or object potentially causing injuries, damage to equipment or the structure, loss of material or reducing the ability to perform the assigned functions (ICAO SMS Manual Doc 9859).

Safety risk management:
The “Safety risk management” indication was defined to transmit the idea that this risk management was not directly associated with the management of financial, statutory, legal, economic and other risks, but that it was mainly limited to Safety risks (ICAO SMS Manual Doc 9859).

Safety risks:
They are defined by assessment, expressed in terms of probability and severity of the consequences of a hazard, by taking into account the most unfavorable hypothesis. A risk level is generally defined through alphanumeric convention to assess its criticality (ICAO SMS Manual Doc 9859):
- Probability: possibility of occurrence of an event (engine power loss: 10^{-5} per Flying Hour).
- Severity (or seriousness): consequence of the occurrence of this event (aircraft damage, slight injuries, etc.).
- Criticality: measurement of the combination of the two factors: $C = P \times S$.
4 - Aim of an analysis & operational risk management process:

The analysis & operational risk management process is applied to detect, analyze and determine the steps to be taken in order to reduce the risk level:
- during aircraft preparation or in flight,
- during maintenance operations or maintenance instructions,
- for any new activity, modifications to procedures or work organization, etc. to be introduced in the normal functioning of a company and which may have an effect on the flight safety.

The previous paragraph indicated that an Undesirable Event (UE) was defined as a loss of control of the situation, i.e., any event which may give rise to an accidental sequence if no efficient recovery action is taken.

The process of identification of hazards and risk management therefore focuses on:
- the measures to be taken to counter the occurrence of an Undesirable Event and to remain in the zone of control,
- the bounds of recovery if ever it occurred, in order to come back to the zone of control and prevent the initiation of an accidental sequence,
- the protective (mitigation) measures to be taken, in order to limit/mitigate the consequences of an accident, if it occurred despite all efforts.

This process can be summarized according to the safety model indicated below:

Safety principles:
- any action that contributes to preventing or recovering the loss of control of the situation, or mitigate the damage
- 3 families: control, recovery, mitigation

Figure 1: Source Air France Consulting/Qualit Audit
This figure shows a ball which rolls in a bowl. The purpose of the game is to prevent the ball from reaching the edge of the bowl and falling, i.e. to remain in the zone of control.

If the ball reaches the edge of the bowl, an Undesirable Event occurs, we have quit the zone of control. It is then mandatory to return to the zone of control or, failing this, to prevent the ball from falling. This materializes the bounds of recovery of the UE.

The MITIGATION "mattress" symbolizes all of the protective measures which may be implemented to limit/mitigate the consequences of an accident. In the case of the figure, the fall of the ball on the ground must be damped so as to prevent it from breaking.

How to implement this process of hazard identification and risk management?
To do this, we suggest that you answer the following questions:

1. What could happen in my activity (hazard identification)?
2. How could it happen (identification of causes)?
3. Which would be the consequences?
4. How to proceed to prevent or limit the probability that it occurs (risk mitigation)?
5. How to proceed to eliminate it or failing this, to limit its consequences (protection)?
6. How to introduce these risk limitation measures (implementation)?

5 - What could happen in my activity (hazard identification):

There are several kinds of hazards. For example:
- Natural hazards (earthquakes, volcanic phenomena, etc.).
- Environmental hazards (cyclones, snow or sand storms, etc.).
- Technological hazards (related to the aircraft design, their maintenance, their operation, etc.).
- Organizational hazards (related to the company itself, to its operating manner).
- Statutory hazards (if the organization encounters difficulty in complying with the statutory requirements and with their evolution, etc.).
- Human hazards (related to training, competence, job culture, etc.).
- Physiological hazards (epidemic diseases, etc.).

There are two types of sources of identification of hazards, i.e. Undesirable Events:
- Internal sources:
 They cover, for instance, incident report analyses, ASRs, voluntary event reports of the organization, flight data analyses of Flight Data Monitoring programs, reports of safety-audits, follow-ups of safety indicators, statements of employees, etc.
- External sources:
 They cover the exchange of information with other companies, the subscription to an incident/accident data bank, the study of reports of national and international organizations, the analysis of manufacturer recommendations, the study of accident reports of the different Air Accident Investigation Boards, specialized publication, etc.

Using these information sources, it is recommended to draw up a list of Undesirable Events which may impact the activity. We also suggest that you use the "Brainstorming" method to conduct this study. A meeting composed of one representative from each expert field shall be held to implement the process of identification of hazards and risk management as described in the following paragraphs of this document.

We recommend that you proceed per risk factor family, e.g.:
- Design.
- Organization.
- Communication.
- Working environment.
- Regulations.
- Human Performance.
- Procedures and operational practices.
To help you, EUROCOPTER has drawn up a non-exhaustive list of Undesirable Events which can be related to the State Safety Program (Appendix 1). Concerning this subject, you can also consult the ICAO website at the following address: http://www2.icao.int/en/ism/iStars/Pages2/Occurrence%20Category%20Relationship.aspx

6 - How could it happen (identification of causes):

There are several methods for analyzing the causes (the FMECA “5 why’s” method, the “tree of causes” method, etc.). Every operator should select the method the most suitable to the size and activity of his company. In the SMS 9859 manual, the ICAO proposes the use of the “Bow Tie”-method.

The "bow tie" is a tool which combines a fault tree and an event tree. The central point of the bow tie is called "Unwanted Incident". The LH part of the bow tie is similar to a fault tree and identifies the causes of the feared central event. The RH part of the bow tie determines the consequences of the unwanted incident in the same manner as an event tree.

The identification of causes focuses on the upstream part of the Feared Event. It is the return to the root causes of the potential accident. This process is summarized below in Figure 2.

![Figure 2: "Bow tie" analysis method](image)

7 - Which would be the consequences?

The list of potential consequences of an accident, if it occurred, must now be drawn up, i.e. the focus must now be set on the downstream part of the Unwanted Incident of Figure 2.

We recommend that you answer (at least) the following questions:
- Which would be the consequences for:
 - the persons on board the aircraft and tasked with preparing the aircraft or third parties near the scene of the accident (injuries, fatality)?
 - the aircraft, the working tool? Will it be necessary to rent another aircraft? Another tool? Find another place for the operations (case of fire in a hangar)?
 - the environment (destruction of goods, pollution, fires, etc.)?
 - the company image (loss of credibility, withdrawal of customers, media impact, legal proceedings, etc.)?
8 - How to proceed to prevent or limit the probability that it occurs (risk mitigation):

It is necessary to assign a risk level (criticality) to the feared event. Remember, risk level is the potential severity of event multiplied by the probability of its occurrence.

It is highly advisable to use a risk matrix to determine the risk levels.

We suggest that you use the following risk matrix. It is inspired by the matrix presented by Mr Tony Cramp, SHELL Aircraft International's Air Senior Advisor, during the CHC Safety & Quality Summit in 2010.

<table>
<thead>
<tr>
<th>Severity</th>
<th>Personnel</th>
<th>Environment</th>
<th>Material</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEGLIGIBLE</td>
<td>Superficial injuries</td>
<td>Negligible effects</td>
<td>Damage < 10K€</td>
<td>Light impact</td>
</tr>
<tr>
<td>MINOR</td>
<td>Slight injuries</td>
<td>Little impact</td>
<td>Damage < 50K€</td>
<td>Limited impact</td>
</tr>
<tr>
<td>MAJOR</td>
<td>Serious injuries</td>
<td>Noteworthy local effects</td>
<td>Damage < 250K€</td>
<td>Considerable impact</td>
</tr>
<tr>
<td>CRITICAL</td>
<td>Fatality</td>
<td>Effects difficult to repair</td>
<td>Damage < 1 M€</td>
<td>National impact</td>
</tr>
<tr>
<td>CATASTROPHIC</td>
<td>Multiple fatalities</td>
<td>Massive effects (pollution, destruction, etc.)</td>
<td>Damage > 1 M€</td>
<td>International impact</td>
</tr>
</tbody>
</table>

Key to severity indices and associated codes in the matrix:

<table>
<thead>
<tr>
<th>Probability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPROBABLE</td>
<td>Almost unthinkable that the event occurs, it has never occurred in the history of the aviation industry</td>
</tr>
<tr>
<td>RARE</td>
<td>Very unlikely to occur, but has already occurred in the aviation history</td>
</tr>
<tr>
<td>LOW</td>
<td>Unlikely to occur, but has already occurred, in the company, at least once</td>
</tr>
<tr>
<td>PROBABLE</td>
<td>Has already occurred in the company (Frq < 1x year)</td>
</tr>
<tr>
<td>FREQUENT</td>
<td>Has already occurred in the company (Frq > 1x year)</td>
</tr>
</tbody>
</table>

Risk level color code:

- ACCEPTABLE
- MEDIUM
- SERIOUS
- UNACCEPTABLE
- UNACCEPTABLE +

Key to probabilities and associated codes in the matrix:
Acceptable or Medium risk level: Lowest risk level likely to be reasonably reached and under which the remaining part of risk can be controlled appropriately. No measure is required to mitigate the risk. This risk level is not fixed on a long-term basis. It depends on the complexity of the operation to be performed (environment, availability of existing documentation, personnel qualification, duration of the mission, etc.), on the existing objective data enabling a qualitative analysis of the risks, on the resources specific to the organization to conduct this risk analysis, etc.

Serious risk level: Risk level at which the organization accepts to move in order to benefit from some advantages for its activity and on the condition that the risk is mitigated as much as possible.

Unacceptable and Unacceptable+ risk level: Means that the activity cannot be continued as is and that it cannot be resumed unless the risk is brought back to the “Acceptable” or “Medium” level or at least to the “Serious” level.

Concerns risks considered as "SERIOUS" to "UNACCEPTABLE+" during the assessment process and requiring measures to bring the risks back to a "MEDIUM" level at least. It is at this stage that a corrective measure plan is defined.

There are **two risk reduction strategies:**
- **prevention**, by taking any actions to reduce the frequency of occurrence of an incident/accident (probability),
- **protection**, by eliminating/reducing the severity of the consequences of an incident/accident if it were to occur.

9 - Implementation of protective measures:

In-depth defense concept:

The prevention and protection measures are also referred to as "defenses" against the accident. They are intended to suppress, or failing this to counteract the hazard (both external and internal), to contain its effects and to eliminate or limit its consequences.

These defenses may be of technical (static or dynamic), organizational, procedural or human order. The expression “in-depth defense” stems from the military language. Its principle is that the defenses should be:
- suitable for the threat,
- at least 3 in series, and independent from one another, in order to avoid the domino effect (hence the expression "in-depth"),
- maintained by a manager,
- flexible for proper adaptation to the evolution of the threat. The Safety Manager should periodically check the relevance of his or her risk analyses. He or she should proceed systematically in case of any change in the organizational scheme, the regulations or the operations (change management).

All solutions are possible, but they all involve costs. It is mandatory to conduct a cost analysis prior to taking any steps. The cost of protective measures should not exceed the cost of the consequences of a risk; otherwise, this may jeopardize the survival of the organization.
You can use the decision matrix below as a decision-making aid.

<table>
<thead>
<tr>
<th>COST</th>
<th>BENEFIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
</tr>
<tr>
<td>Low</td>
<td>1</td>
</tr>
<tr>
<td>Medium</td>
<td>2</td>
</tr>
<tr>
<td>High</td>
<td>3</td>
</tr>
</tbody>
</table>

Figure 3: Cost/Benefit analysis matrix

Score from 1 to 2: The preventive and protective measures can be adopted as are.
Score equal to 3: If possible, reduce the cost of the implementation of the preventive and protective measures.
Score higher than 3: Review the risk analysis to find new solutions.

It is advisable to draw up an implementation plan of these measures with an associated schedule. The implementation of the actions must be supervised by identified managers. Any corrective measures must be taken. The results obtained will be used to feed the safety indicators of the SMS.

10 - Concrete case:

10-1 Step 1, identification of hazards:

We will take the example of the partial or total engine power loss in cruise flight on a twin-engine aircraft. This is a failure considered as rare according to the certification criteria (1.10^{-5} per flying hour).
However, the reality shows that this type of event occurs at a higher frequency than that taken into account for the turbo-shaft power plant certification. For this reason, we must search, within our aviation company, for the root causes which may cause this type of event in order to be able to eliminate them, prevent them and protect ourselves against them.

For the purpose of that drill, we will consider ourselves in a public passenger transport context, in single-pilot operation, in IFR flight rules, and in IMC conditions.

10-2 Steps 2 and 3, identification of causes and consequences:

We use the "bow tie" method described in paragraphs 7 and 8.
Loss of power of a single engine

Impact

Injured occupants

Aircraft damaged

Ultimate Event

Loss of control of the situation

No. 2255-I-00

Loss of control of the situation

Undesirable Event

 Unsafe conditions of the engine

Unsuitable conditions for the engines

Bird strike, ice ingestion, FOD, etc.

Internal component failure

Failure further to maintenance operation (on fuel system, engine, lubrication system)

Errors, infringements during maintenance operations

Fuel contaminated or unsuitable for engine type (may affect both engines!!!)

No formal refuelling procedures

Errors, infringements during refuelling operations

Error when determining fuel quantity to be taken for the flight

Faults in flight preparation, failure to take weather conditions into account, etc.

Insufficient technical knowledge of the aircraft

Insufficient fuel quantity for the flight

Injured occupants

Aircraft damaged

Accident was avoided by pure luck
10-3 Step 4, risk analysis:

We use the risk matrix proposed on page 7. Being intentionally conservative, we assume that this incident has already occurred in the company, at least once. The occurrence probability can therefore be qualified as LOW. At present, in this company, the rare occurrences have always been controlled and the aircraft have always landed without incident, because the flight manual procedures have always been perfectly complied with.

However, the consequences of this event should not be disregarded, because things can go wrong at any time. Certain consecutive events following engine failure should not be disregarded, such as a bad management of the fuel to be used in flight or a sudden movement during landing causing the loss of control of the aircraft.

Lastly, even if the event is perfectly managed, its impact on the company image must not be overlooked as the passengers do not expect to live this kind of experience during the flight.

We then qualify its severity as MAJOR.

This Undesirable Event is therefore qualified as SERIOUS and risk reducing measures must be taken. The existence and efficiency of preventive and protective measures must therefore be checked.

On the following pages, we will only deal with the first four root causes of the analysis, for demonstration purposes, i.e.:
- ingestion of foreign bodies (FOD, ice, bird strike, etc.),
- failure of an internal component,
- failure due to a maintenance operation,
- errors, infringements during maintenance operations.
Example of safety barrier intended to prevent the occurrence of an Undesirable Event

- **Unsafe conditions of the engine**
- **Loss of power of a single engine**
- **Loss of control of the situation**

Internal component failure
- Failure following a maintenance operation (on fuel system, engine, lubrication system)
- Continued airworthiness process
- Prevention of "bogus parts"
- Installation of HUMS or equivalent
- Quality and Safety policy actively supported by the CEO

FOD prevention policy
- Engine air intake protection, etc

Continued airworthiness process
- Installation of HUMS or equivalent
- Quality and Safety policy actively supported by the CEO

Internal component failure
- Failure following a maintenance operation (on fuel system, engine, lubrication system)
- Continued airworthiness process
- Prevention of "bogus parts"

FOD prevention policy
- Engine air intake protection, etc

Errors, infringements during maintenance operations
- Adequate work environment (tools, noise, cleanliness, storage, lighting, temperature, personal protective equipment, etc.)

Continued airworthiness process
- Installation of HUMS or equivalent
- Quality and Safety policy actively supported by the CEO

FOD prevention policy
- Engine air intake protection, etc

Errors, infringements during maintenance operations
- Adequate work environment (tools, noise, cleanliness, storage, lighting, temperature, personal protective equipment, etc.)
Loss of control of the situation

Pilot tries to regain control of the situation

Impact

Energy-absorbing fuel tank

Maritime operations: fitting of flotation device

Energy-absorbing seats for the flight crew and the passengers

Carrying life rafts, life vests, survival kits, first-aid kits, etc. on board

Flight crew wears crash helmets, gloves, NOMEX flight suits, etc.

Mandatory pre-flight briefing on emergency evacuation operations, preparation and use of rescue equipment

Additional cabin extinguishers on board

Equipment of the flight crew with individual ELTs

Aircraft damaged

Injured occupants

Accident was avoided by pure luck

Subscription to a service ensuring real-time monitoring of the fleet by satellite

Injured occupants

Aircraft damaged

Example for a protective defences intended to limit the consequences of an accident
10-4 Step 5, resulting risk level:

Implementing these preventive measures, we can now assume that the occurrence probability of this UE will be qualified as RARE.
We can also assume that the consequences of the UE, if it was not controlled and degenerated into an accident, can be qualified as MINOR due to the implementation of additional protective measures.

<table>
<thead>
<tr>
<th>CATASTROPIC</th>
<th>CRITICAL</th>
<th>MAJOR</th>
<th>MINOR</th>
<th>NEGLIGIBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPROBABLE</td>
<td>RARE</td>
<td>LOW</td>
<td>PROBABLE</td>
<td>FREQUENT</td>
</tr>
</tbody>
</table>

Color code:

ACCEPTABLE MEDIUM SERIOUS UNACCEPTABLE UNACCEPTABLE +

This Undesirable Event can be qualified as MEDIUM due to the implementation of the risk reducing measures.

10-5 Step 6, introduction of protective and risk management measures:

In Appendix 2 you will find a follow-up form for the implementation of the protective and risk management measures. This document sums up the risks and main protective measures (defenses against accidents) defined following the study of this concrete case.
Please note that a person is made responsible for each protective measure. This person must make sure that the accident defense measure for which he/she is responsible is valid and sustainable. Otherwise, the Safety Manager must be kept informed until the defense measure has regained its full efficiency or is replaced with a more efficient measure.

Each Undesirable Event or risk identified in the risk mapping of the company should have a similar paper or computerized follow-up record.

11 - Risk mapping:

You will find in Appendix 3 some simplified accident scenarios (no AND/OR logic). These scenarios are intended to be used as a basis to prepare your own risk mapping and to help you select events with the highest probability of occurrence.

These scenarios were prepared for public passenger transport operations but may also serve as a base of reflection for any other activity (aerial work, EMS, training, etc.).
Scenario 1: High-energy collision with the ground without loss of control of the aircraft (CFIT, etc.).

Scenario 2: Loss of control in flight.

Scenario 3: In-flight collision between two aircraft.

Scenario 4: Loss of control on ground.

Scenario 5: Collision on ground.
12 - Summary of the course of actions:

The course of actions described in this guide can be summarized according to the block diagram below:

- **Hazard identification**

- **Equipment items, procedures, organization, etc.**

- **Analyze the possibility for the consequences to materialize**

- **Assess the seriousness of the consequences if they materialize**

- **Is (are) the risk(s) acceptable according to the performance criteria selected by the organization regarding safety?**

 - **Yes**
 - **Accept the risks**

 - **No**
 - **Take steps to reduce the risk(s) to an acceptable level**

- **Is it possible to limit the consequences or the frequency?**

 - **Yes**
 - **Accept the residual risk**

 - **No**
 - **Discontinue the operations**

- **Definition of the actions to be taken and implementation plan**

- **SMS data bank, risk mapping**

- **Risk analysis:**
 - Probability
 - Severity

- **Risk assessment**

- **Implementation follow-up.**

- **Introduction of corrective actions if necessary.**

The analysis and management of the operational risk, associated with an organization minimizing the risk of errors, are components essential to flight safety.
Appendix 1: List of Undesirable Events (UEs) (Cont’d)

<table>
<thead>
<tr>
<th>No.</th>
<th>Identification of Undesirable Events (UE)</th>
<th>EU1 - CFIT</th>
<th>EU2 - Crash after loss of control in flight</th>
<th>EU3 - Collision in flight</th>
<th>EU4 - Collision on ground</th>
<th>EU5 - Runway excursion</th>
<th>EU6 - Damage/injuries in flight</th>
<th>EU7 - Damage/injuries on ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE01</td>
<td>Non-stabilized approach</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UE02</td>
<td>Incorrect weight/center of gravity determination and insertion of these data in the FMS</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE03</td>
<td>Incursions on runways</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE04</td>
<td>Incident associated with icing conditions or deicing procedures</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UE05</td>
<td>Hazardous phenomena encountered (thunderstorms, strong winds, wind shear, hailstorms, fog, etc.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE06</td>
<td>Failure of a single engine on multi-engined aircraft (failure, no fuel left, etc.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE07</td>
<td>Flight path deviation "en route"</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE08</td>
<td>Loss of (IFR/IFR or special IFR/VFR) separation in flight</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UE09</td>
<td>Unsuitable action of the flight crew (FH, regulation)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>UE10</td>
<td>Failure of ground/onboard interfaces</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UE11</td>
<td>Events associated with contaminated runway</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UE12</td>
<td>Aircraft system failure (other than engine failure)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>UE13</td>
<td>Fire, smoke, accidental contact of an oxidizer with a source of ignition</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE14</td>
<td>Events associated with work/maintenance operations/dimensions on the helipad</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UE15</td>
<td>Events associated with an incident in maintenance</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>UE16</td>
<td>Critical aircraft damage not detected before flight</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>UE17</td>
<td>Failure of a single engine on single-engined aircraft (failure, no fuel left, etc.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UE18</td>
<td>Malfunctioning of the communication system (ATC/aircraft, aircraft/ground team, etc.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE19</td>
<td>Obstacle unknown to the flight crew, likely to produce interference with the flight path</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UE20</td>
<td>Bird strike</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UE21</td>
<td>Inadvertent entry in IMC, loss of visual reference in flight</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE22</td>
<td>Exceedance of weight limitation and centre-of-gravity position affecting the controllability</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UE23</td>
<td>Cargo load moving in flight (with or without tie-down failure)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 1: List of Undesirable Events (UEs) (Cont’d)

<table>
<thead>
<tr>
<th>No.</th>
<th>Identification of Undesirable Events (UE)</th>
<th>EU1 - CFIT</th>
<th>EU2 - Crash after loss of control in flight</th>
<th>EU3 - Collision in flight</th>
<th>EU4 - Collision on ground</th>
<th>EU5 - Runway excursion</th>
<th>EU6 - Damage/injuries in flight</th>
<th>EU7 - Damage/injuries on ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE24</td>
<td>Unsuitable size of landing areas (helidecks and helipads)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE25</td>
<td>Nature of landing areas (narrow, sloping, mud, etc.) and/or their environment (hostile, urban, etc.)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE26</td>
<td>Poor/comprehension/communication between contributors (phraseology flight crew/ATC, ground team, etc.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE27</td>
<td>Unsuitable ATC instruction</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE28</td>
<td>Confusion between TWY, runway and airport, etc.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE29</td>
<td>Aeronautical documentation/database incorrect or incomplete</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE30</td>
<td>Incapacity of the flight crew affecting the controllability</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE31</td>
<td>Malfunctioning of one or more systems, components, charging elements causing a fire or an explosion</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE32</td>
<td>Illicite act (sabotage, terrorism, etc.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE33</td>
<td>Splashing of liquids (failure of a hydraulic pipe, fuel, etc.)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE34</td>
<td>Material falling off the helicopter, luggage not stowed</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE35</td>
<td>Debris and rubble propelled by the rotor stream</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE36</td>
<td>Loss of components in flight</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE37</td>
<td>Loss of objects/external loads in flight</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE38</td>
<td>Crew member falling off in flight (flight with opened door)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE39</td>
<td>Crew member falling from the aircraft on ground</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE40</td>
<td>Damage to the RAC during external load carrying (hoisting, lifting, etc.)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE41</td>
<td>Poor coordination with the ground team/ship during external load carrying operations</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE42</td>
<td>Injury to personnel caused by electric shock (static current)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE43</td>
<td>Loss of visual reference during night flight in SAR instruction</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE44</td>
<td>Inadequate helideck (Off Shore)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE45</td>
<td>Incident during refuelling on helideck (hot refueling)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE46</td>
<td>Runway beaconing, lanes, parking, etc. insufficient or inadequate</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE47</td>
<td>Incursion of vehicles/aircraft/personnel/animals in airport service areas</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE48</td>
<td>Injury caused to personnel by rotor blades</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE49</td>
<td>Occupant not strapped in, in flight</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE50</td>
<td>Loss of lift (VORTEX)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE51</td>
<td>Jack-stall threshold reached by the controls</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2

UNDESIRABLE EVENT

<table>
<thead>
<tr>
<th>Event</th>
<th>REF</th>
<th>Risk level</th>
<th>Initial</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>One engine inoperative on multiengine aircraft (single pilot operation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ULTIMATE LINKED EVENT

- Crash after loss of control in flight
- Damage/injuries in flight
- Damage/injuries on the ground

Defense:

<table>
<thead>
<tr>
<th>Forerunner of the Undesirable Event</th>
<th>Control and recovery measures</th>
<th>Responsible</th>
<th>Implemented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical failure, malfunctioning of the fuel system</td>
<td>The engine systems and components are maintained and configured according to an approved program applied by an approved organization</td>
<td>Maintenance Manager</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>The organization has a continued airworthiness program</td>
<td>CAMO Manager</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>The qualification of flight crews is up-to-date and they follow a regular training program covering normal and emergency procedures</td>
<td>Chief Pilot</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>The flight crew is aware of the situation and apply the suitable procedure</td>
<td>Etc…</td>
<td>X</td>
</tr>
<tr>
<td>Ingestion of FOD</td>
<td>The organization has a FOD prevention program</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Protection of the engine air intake, anti-icing system</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Unsuitable use of the engine</td>
<td>The qualification of flight crews is up-to-date and they follow a regular training program covering aircraft operating procedures</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>The company has introduced a Helicopter Flight Data Monitoring (HFDM) program</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Loaded fuel quantity insufficient for the flight (Flight planning error, error during refueling operation)</td>
<td>The refueling company has clear and relevant procedures concerning refueling operations</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>The operators comply with the refueling procedures</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>The flight crews cross-check the loaded fuel quantities before every flight</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>The company has introduced a policy to determine the quantity of fuel to be loaded for the flight</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>The fuel system is maintained and checked in accordance with the approved program</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Fuel contaminated or unsuitable for this type of engine</td>
<td>The company has clear and relevant procedures concerning refueling operations, including anti-contamination tests</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>The flight crews systematically cross-check the type and quality of the loaded fuel before flight</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
The company has introduced an in-flight fuel management policy
During preparation for flight, the flight crew has taken into account any change in the weather conditions and the relevant impact on the flight path
Briefings covering fuel management and aircraft fuel system operation are given at regular intervals
In flight, the flight crews check the fuel consumption and its change at regular intervals
In the event of a system malfunctioning, the flight crews apply the suitable procedure
According to the over flown area, the flight crew has selected suitable and accessible alternate fields

<table>
<thead>
<tr>
<th>Unsuitable fuel management</th>
<th>Protection measures:</th>
<th>Responsible</th>
<th>Yes</th>
<th>No</th>
<th>Partly</th>
</tr>
</thead>
<tbody>
<tr>
<td>The flight crew takes into account these events and their consequences on fuel management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unplanned change of flight path</th>
<th>Protection measures:</th>
<th>Responsible</th>
<th>Yes</th>
<th>No</th>
<th>Partly</th>
</tr>
</thead>
<tbody>
<tr>
<td>The flight crew is aware of the meteorological phenomena encountered and acts accordingly (avoidance action, use of MPA, deicing, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meteorological phenomena (icing, heavy rain, etc.)</th>
<th>Protection measures:</th>
<th>Responsible</th>
<th>Yes</th>
<th>No</th>
<th>Partly</th>
</tr>
</thead>
<tbody>
<tr>
<td>The flight crew has selected suitable and accessible alternate fields</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ultimate events (if insufficient defenses)</th>
<th>Protection measures:</th>
<th>Responsible</th>
<th>Yes</th>
<th>No</th>
<th>Partly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determination of a risk exposure time in performance class 2. (refer to Appendix 1, OPS paragraph 3.517)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offshore flight: emergency flotation gear installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation of energy-absorbing seats (flight crews and passengers)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subscription to a service ensuring real-time follow-up of the aircraft flight path</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carrying and wearing rescue equipment (life rafts, life vests, waterproof flight suits, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carrying survival kits in addition to approved kits for flight over inhospitable areas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carrying individual emergency locator (according to the type of mission)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provision of shock-proof helmets, gloves and fire-proof flight suits for flight crews according to the type of flight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency evacuation training (HUET type) performed at regular intervals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routine safety briefing for passengers upon boarding reminding them of the dangers of rotors, safety routings, aircraft evacuation rules, emergency exit operating procedure use of rescue equipment, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crash following in-flight loss of control</th>
<th>Protection measures:</th>
<th>Responsible</th>
<th>Yes</th>
<th>No</th>
<th>Partly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damage/injuries on the ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Damage/injuries in flight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Damage/injuries on the ground</th>
<th>Protection measures:</th>
<th>Responsible</th>
<th>Yes</th>
<th>No</th>
<th>Partly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damage/injuries in flight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 3: scenario 1

- Not updated, erroneous or missing aeronautical documents or database
- No access to air information (NOTAM, etc.)
- Time pressure, commercial pressure, psychological condition, etc.
- Routine
- Worsening weather conditions
- Night flight, dusk, or dawn
- Language barrier, high density of air traffic
- Conditions likely to cause infringements
- Disturbance to awareness, loss of awareness of the situation
- Incomplete flight preparation, obstacle unknown to the flight crew
- Error when entering data into the FMS
- Erroneous aircraft flight path
- Reduced external visibility
- Erroneous ATC instruction
- Voluntary flight crew action
- Involuntary flight crew action
- Deviation from flight route/Flight below minimum statutory flight height
- CFIT (controlled flight into terrain)
Appendix 3: scenario 2

- In-flight loss of control
- Un-stabilized flight path
- Spatial disorientation of the flight crew
- Reduced external visibility
- Action beyond the competence of the Pilot In Command or beyond aircraft flight envelope
- Exceeded Weight and Balance limits affecting aircraft controllability
- Payload incorrectly lashed or positioned
- Indiscipline, overconfidence, etc.
- Conditions likely to cause infringements
- Physiological phenomena
- Disturbed awareness
- Worsening weather conditions
- Night flight, dusk, dawn
- Hazardous weather conditions
- Critical damage, undetected before the flight
- Bird strike
- Collision with obstacles during take-off or landing
- Cargo slings/external load impacts with the rotors
- Failure caused by erroneous maintenance operation
- Engine power anomaly on single-engine aircraft
- Engine power anomaly on twin-engine aircraft
- Engine power anomaly on single-engine aircraft
- Engine power anomaly on twin-engine aircraft
- Anomaly on flying controls, airframe, loss of components in flight, alteration of flight crew’s field of vision
- Unsafe conditions of the aircraft resulting in an emergency situation in flight.
- Erroneous or missing information (IAS, attitudes, positions, etc.)
- Loss of engine power (taking into account the type of operation and flight phase)
Appendix 3: scenario 3

Collision in flight

- Incomplete flight preparation
- Error when entering data into the FMS
- Erroneous aircraft flight path
- Reduced external visibility
- Error when entering data into the FMS
- Erroneous ATC instruction or no traffic information
- Error or missing information (altitude, aircraft positions, avoidance orders, etc.)
- Deviation from flight route/Flight below minimum authorised flight height
- Voluntary flight crew action
- Involuntary flight crew action

- Not updated, erroneous or missing aeronautical documents or database
- No access to air information (NOTAM, etc.)
- Time pressure, commercial pressure, psychological condition, etc.
- Routine
- Worsening weather conditions
- Night flight, dusk, dawn
- Language barrier, high density of air traffic, no ATC service
- System failure caused by erroneous maintenance operation
- Conditions likely to cause infringements
- Disturbed awareness, loss of awareness of the situation
- Barometric air data system fault

Worsening weather conditions

Language barrier, high density of air traffic, no ATC service

System failure caused by erroneous maintenance operation

Conditions likely to cause infringements

Disturbed awareness, loss of awareness of the situation

Barometric air data system fault

Error when entering data into the FMS

Error or missing information (altitude, aircraft positions, avoidance orders, etc.)

Voluntary flight crew action

Involuntary flight crew action

Routine

Not updated, erroneous or missing aeronautical documents or database

No access to air information (NOTAM, etc.)
Appendix 3: scenario 4

Loss of control on ground

- Flying control stops reached
 - Action beyond the competence of the Pilot In Command/Failure to observe taxying procedure
 - Taxying on unsuitable zone, landing on unsuitable surface
 - Reduced external visibility
 - Airframe anomaly, loss of components in flight
 - Unsafe aircraft conditions resulting in emergency situation on ground

- Static or dynamic roll-over
 - Reduced aircraft manoeuvrability

- Slope landing limitations exceeded
 - Slippery ground (mud, ice, etc.)
 - Skid, wheel blocked during hover

- Conditions likely to cause infringements, overconfidence etc.
 - Time pressure, etc.
 - Disturbed awareness

- Language barrier, high density of air traffic, no ATC service
 - Worsening weather conditions
 - Night flight, dusk, dawn

- Hazardous weather conditions

- Critical damage, undetected before the flight

- Bird strike

- Collision with obstacles during taxying or hover

- System failure caused by maintenance operation (intervention on hydraulic system, braking system, etc.)

This document is available on the internet: www.eurocopter.com/techpub
Appendix 3: scenario 5

Collision on ground

- Not updated, erroneous or missing aeronautical documents or database
- No access to air information (NOTAM, etc.)
- Time pressure, commercial pressure, psychological condition, etc.
- Routine
- Disturbance awareness, loss of awareness of the situation
- Reduced external visibility
- Conditions likely to cause infringements
- Language barrier, high density of air traffic, no ATC service
- System failure caused by maintenance operation (intervention on hydraulic system, braking system, etc.)
- No marking on ground (safety perimeter, axial line)
- Wildlife hazard
- No instruction for manoeuvring area (aircraft, vehicles, pedestrians, etc.)

Incomplete flight preparation

Wrong aircraft taxying path

Error when choosing taxiway

Deviation from initial rolling path

Voluntary flight crew action

Unsafe aircraft condition resulting in emergency situation on ground

Erroneous ATC instruction or no traffic information

Reduced aircraft manoeuvrability

No traffic control on traffic area

Failure to observe minimum safety distances