Last October we held the 13th Airbus Flight Safety Conference. This was an opportunity to share information for the 125 attendees (out of which about 30% attended for the first time) representing 80 Airbus operators.

The feedback we received was very positive, highlighting in particular the very open and fruitful exchange of information, not only between Airbus and You, our Operators, but also between Operators themselves. Notably 7 airlines shared their experiences either on crisis management or on safety related events.

We can consider this as a clear indication that the Airbus Flight Safety Conference became what we hoped for 13 years ago: “our Operators” Safety Conference.

Similarly, the Airbus Safety Magazine, the extension of our Safety Conference, has to become as well “our Operators” Safety Magazine.

Therefore we hope receiving articles from you that can be published in our next Safety First magazine during the last 13th Safety Conferences.

I hope you will enjoy reading this 3rd issue of Safety First and feel free to widely distribute it throughout your organisation.

Yours sincerely

Yannick MALINGE
Vice President Flight Safety
Another annual Flight Safety Conference has been very successfully completed and we hope you all benefited from the information sharing between us all.

We have received some requests to use the presentations internally within some airlines, so if you want to do this or you want more information on the conference content then contact us on the e-mails below.

We are already planning next year’s conference from October 15th to 18th. We will inform everyone as usual for registration.

As always we will be asking for your inputs for the conference. The more operator presentations the better so if you have ideas then let us know but also if there are specific subjects you would like to see in the conference then also get in touch with us.

As Yannick Malinge says in his editorial this is your conference.

Airbus Flight Safety Office

In the back of the magazine you will find pictures and information on the Flight Safety Team. Since the last issue of the magazine there are two new Flight Safety managers:

Frédéric COMBES and Nicolas BARDOU

Both are bringing their experience from wide but different backgrounds in Airbus.

Also please note that many of our mobile phone numbers have changed.

Your articles

As already said this magazine is a tool to help share information. Therefore we rely on your inputs. We are still looking for articles from operators that we can help pass to other operators through the magazine.

If you have any inputs then please contact us.

Contact: Chris Courtenay e-mail
christopher.courtenay@airbus.com
Phone: +33 (0) 562110284
Mobile: +33 (0) 616036422

Distribution

If you have any questions about the distribution of the magazine either electronically or in hard copy then please contact us.

Contact: Mrs Nuria Soler
e-mail: nuria.soler@airbus.com
fax: +33 (0) 561934429

News

13th Flight Safety Conference

One of the basic task sharing principle for any aircraft operation is that one pilot is Pilot Flying at a time. Therefore, if the Pilot Not Flying disagrees with the Pilot Flying inputs, he/she has to verbally request corrective actions or, if deemed necessary, to take over the controls by clearly announcing “I have controls”.

This will mean that he/she becomes Pilot Flying from that moment and the other Pilot Not Flying. Nevertheless, the feedback gained from line operations monitoring indicates that dual inputs still occur and are also sometimes involved in operational incidents analyzed by Airbus.

This was the case for the below described event, experienced on an A320 during turbulence.

Before the event the aircraft was in climb to FL 320. The airplane had a weight of 61,2t. and was in the following configuration:

- Clean with AP 2 engaged (CLIMB / NAV) and
- THR Engaged & Active in Thrust mode.
- Managed Mach target was 0,78
- Both ND CPT & FO were selected in ARC Mode with a range of 160NM

The aircraft began an uncommanded roll to the right, which was initially counteracted by the Auto Pilot. However, at a speed above 250 kts, Auto Pilot orders on ailerons are limited at 8°. Therefore, due to the high turbulence the roll reached a value of 40° to the right.

Both pilots reacted with full LH stick orders and 10° LH rudder pedals.

This induced the disengagement of the Auto Pilot. During the next 20 seconds, the Captain and First Officer applied dual stick inputs, which lead to roll values oscillating between 33° to the left and 49° to the right, as well as a loss of 2400 feet altitude.

The Captain then re-engaged the Auto Pilot, selected Flight Level 310, and the flight resumed without noticeable event.

Dual Side Stick Inputs

By: Frédéric COMBES
Flight Safety Manager

1 Introduction

One of the basic task sharing principle for any aircraft operation is that one pilot is Pilot Flying at a time. Therefore, if the Pilot Not Flying disagrees with the Pilot Flying inputs, he/she has to verbally request corrective actions or, if deemed necessary, to take over the controls by clearly announcing “I have controls”.

This was the case for the below described event, experienced on an A320 during turbulence.

Before the event the aircraft was in climb to FL 320. The airplane had a weight of 61,2t. and was in the following configuration:

- Clean with AP 2 engaged (CLIMB / NAV) and
- THR Engaged & Active in Thrust mode.
- Managed Mach target was 0,78
- Both ND CPT & FO were selected in ARC Mode with a range of 160NM

The aircraft began an uncommanded roll to the right, which was initially counteracted by the Auto Pilot. However, at a speed above 250 kts, Auto Pilot orders on ailerons are limited at 8°. Therefore, due to the high turbulence the roll reached a value of 40° to the right.

Both pilots reacted with full LH stick orders and 10° LH rudder pedals.

This induced the disengagement of the Auto Pilot. During the next 20 seconds, the Captain and First Officer applied dual stick inputs, which lead to roll values oscillating between 33° to the left and 49° to the right, as well as a loss of 2400 feet altitude.

The Captain then re-engaged the Auto Pilot, selected Flight Level 310, and the flight resumed without noticeable event.

2 Summary of the event

While climbing to FL 320 at about Mach 0.78, an A320-200 encountered significant turbulence that led roll to increase up to 40°.

The Pilots reacted to this roll departure by various dual sticks inputs in pitch and roll. The Auto Pilot disconnected consequently to stick input.
With autopilot (AP) engaged, the sidesticks are kept in the neutral position, with no possibility of simultaneous inputs from either pilot.

Indeed, when the A/P is engaged, it is normally disconnected by pressing the priority P/B (the pilot takes priority over the A/P) or instinctively at any time by a firm action on the stick: typically 5kg in pitch, 3.6kg in roll.

Simultaneous inputs by both PF and PNF on the sidesticks must be avoided. Thus, if the PNF feels he must intervene, he must do so by pressing the Priority P/B while saying "I have controls".

These rules are reminded in the Flight Crew Training Manual 01.020 – Flight Controls and Flight Crew Operating Manual 1.27.40 – Flight Controls: Controls and Indicators.
In order to warn the crew in case of dual sidestick operations, Airbus has designed a package of dual input indicators and audio warning. These operate when both side sticks are deflected simultaneously by more than 2°. These visual and aural warnings have proved to be efficient means to inform the pilot of dual inputs.

Visual Indication

When a dual input situation is detected, the two green priority lights located on the cockpit front panel flash simultaneously.

The visual indication is an **ADVISORY** of a dual input situation.

Aural Indication

After the visual indication has been triggered, a synthetic voice “DUAL INPUT” comes up every 5 sec, as long as the dual input condition persists.

The synthetic voice is a **WARNING** of a dual input situation.

Note: This audio has the lowest priority among the synthetic voice audio alerts.

HOW TO UPGRADE YOUR SA AND LR AIRCRAFT?

- The visual and audio indications are designed to provide the crew with a progressive alert.
- Experience has shown, that these warnings are very effective to:
 - “Educate” the pilots to respect the basic task sharing principle;
 - Reduce drastically the number of dual input occurrences.
- The activation of these dual input warnings has no repercussion in term of:
 - Crew training;
 - Mixed fleet flying.

Introduction

This article describes an uneventful flight, during which the aircraft was in an unsafe condition. As a result of what was erroneously considered as a minor damage, the limit loads of the THS were no more sustainable. This resulted from a wrong appreciation of composite structure damage. The objective of this article is to highlight the paramount importance of building a good knowledge of composite structure damage and repair.

Composite structure training is available at Airbus training center.

The Structure Repair Manual’s (SRM) procedures must be respected and, if outside SRM limits, Airbus must be contacted to always ensure aircraft structural integrity.

On 21st of August 2004 upon landing, the subject airplane was found with a torn lower skin of the right hand THS Lateral Box. This damage was thought to be due to a Foreign Object Damage (FOD) and resulted in a leaking Trim Tank.

A missing water servicing door (164AR) was suspected to have caused the damage. The damage was inspected externally only. The external cut was measured to be about 330mm length by 3mm width, in line of flight, located at the THS bottom skin panel, just behind second THS inboard handhole access panel.

The visible damage is shown on the picture: Based on external visual findings, the operator performed a temporary repair, by filling the damage...
The operator issued then an engineering note for:

- Performing a close visual inspection upon next aircraft landing, to confirm that there was no repair deterioration, crack propagation or any other adverse findings;
- Ensure that the trim tanks of the horizontal stabilizer were inop as per A330 AMM;
- Repeat close visual inspection at every transit;
- Perform permanent repair at next B check (2 months later).

When informed, Airbus requested immediate damage assessment (including NDT) inside the THS trim tank before next flight (as per standard SRM requirement), in order to define a valid repair.

As per the inspection, the monolithic CFRP panel was found cracked throughout the cut length, with large delaminations in the surrounding area. Two stringers located on the THS bottom skin panel had been severely damaged.

Internal views of the THS are shown opposite.

The aircraft required immediate appropriate repair, as the temporary repair did not restore the required structural integrity of the THS.

An OIT was issued (reference SE 999.0115/04 dated 15th Oct. 2004) for A310/A300-600/A300-600ST/A318/A319/A320/A321/A330/A340. OIT recommendations are as follows:

- "In case of damage, composite structure degrades in a different way compared to metallic structure. In the particular case of impact with a foreign object the internal damage might be larger than the visible external damage. On monolithic structure, impact damage will usually result in delamination around perforation and damage to structure underneath."
- "AI instructions for inspection and repair of composite structure given in the SRM are to be followed, to detect damage in its full extent, and to prevent [...] inappropriate repair."

Composite structure courses are available at Airbus training department to provide specific knowledge with regard to maintenance and repair of composite structure.

See Airbus customer portal, structure training catalogue available:
- Composite structure NDT inspection (XSB2)
- Composite repair for technicians - basic (XSA2)
- Advanced composite repair for technicians (XSA3)
- A new course:
 - Structure repair for engineers composite structures (XSC3)

For more information, please connect to: https://w3.airbus.com/crs/A333_Train/0500_catalogs/Structure_MENU.htm

Conclusion

- Internal damage might be larger than the visible external damage on composite structure (monolithic, sandwich, CFRP, GFRP);
- Airbus instructions related to repair of composite structure given in the SRM are to be followed, to detect damage in its full extent, and to prevent inappropriate repair;
- SRM repair procedure to be respected or, if outside SRM limits, contact Airbus to always ensure aircraft structural integrity;
- Composite structure courses are available at Airbus training department to provide specific knowledge with regard to maintenance and repair of composite structure.

Actions Launched

The aircraft required immediate appropriate repair, as the temporary repair did not restore the required structural integrity of the THS.

An OIT was issued (reference SE 999.0115/04 dated 15th Oct. 2004) for A310/A300-600/A300-600ST/A318/A319/A320/A321/A330/A340. OIT recommendations are as follows:

- "In case of damage, composite structure degrades in a different way compared to metallic structure. In the particular case of impact with a foreign object the internal damage might be larger than the visible external damage. On monolithic structure, impact damage will usually result in delamination around perforation and damage to structure underneath."
- "AI instructions for inspection and repair of composite structure given in the SRM are to be followed, to detect damage in its full extent, and to prevent [...] inappropriate repair."

Composite structure courses are available at Airbus training department to provide specific knowledge with regard to maintenance and repair of composite structure.

See Airbus customer portal, structure training catalogue available:
- Composite structure NDT inspection (XSB2)
- Composite repair for technicians - basic (XSA2)
- Advanced composite repair for technicians (XSA3)
- A new course:
 - Structure repair for engineers composite structures (XSC3)

For more information, please connect to: https://w3.airbus.com/crs/A333_Train/0500_catalogs/Structure_MENU.htm

Conclusion

- Internal damage might be larger than the visible external damage on composite structure (monolithic, sandwich, CFRP, GFRP);
- Airbus instructions related to repair of composite structure given in the SRM are to be followed, to detect damage in its full extent, and to prevent inappropriate repair;
- SRM repair procedure to be respected or, if outside SRM limits, contact Airbus to always ensure aircraft structural integrity;
- Composite structure courses are available at Airbus training department to provide specific knowledge with regard to maintenance and repair of composite structure.

Actions Launched

The aircraft required immediate appropriate repair, as the temporary repair did not restore the required structural integrity of the THS.

An OIT was issued (reference SE 999.0115/04 dated 15th Oct. 2004) for A310/A300-600/A300-600ST/A318/A319/A320/A321/A330/A340. OIT recommendations are as follows:

- "In case of damage, composite structure degrades in a different way compared to metallic structure. In the particular case of impact with a foreign object the internal damage might be larger than the visible external damage. On monolithic structure, impact damage will usually result in delamination around perforation and damage to structure underneath."
- "AI instructions for inspection and repair of composite structure given in the SRM are to be followed, to detect damage in its full extent, and to prevent [...] inappropriate repair."

Composite structure courses are available at Airbus training department to provide specific knowledge with regard to maintenance and repair of composite structure.

See Airbus customer portal, structure training catalogue available:
- Composite structure NDT inspection (XSB2)
- Composite repair for technicians - basic (XSA2)
- Advanced composite repair for technicians (XSA3)
- A new course:
 - Structure repair for engineers composite structures (XSC3)

For more information, please connect to: https://w3.airbus.com/crs/A333_Train/0500_catalogs/Structure_MENU.htm

Conclusion

- Internal damage might be larger than the visible external damage on composite structure (monolithic, sandwich, CFRP, GFRP);
- Airbus instructions related to repair of composite structure given in the SRM are to be followed, to detect damage in its full extent, and to prevent inappropriate repair;
- SRM repair procedure to be respected or, if outside SRM limits, contact Airbus to always ensure aircraft structural integrity;
- Composite structure courses are available at Airbus training department to provide specific knowledge with regard to maintenance and repair of composite structure.
Take-offs are sometimes pursued in spite of one incorrect maintenance of these probes is the CAS2 was estimated to be below 80kt; CAS1 was about 60kt; Probe 2 ground speed was above 160kt; CAS 3 was reportedly reliable. Consequently, this article aims at reminding ground on any other Airbus aircraft. However, this type of event could have happened on an A330. For the purpose of this review we will refer to an event that was recently experienced on an A330. Prior to the flight, the aircraft spent a few hours on the stand. Storm conditions prevailed during the ground time. Pitot probes were not protected with covers and became obstructed. This was not noticed before take-off. During the take-off run, CAS1 (Computed Air Speed) and CAS2 were indicating too low speed. However, the take-off was continued. Later investigation of the flight data recordings and crew report resulted in the following information about the lift-off speeds:

<table>
<thead>
<tr>
<th>Pitot Probes Obstruction on Ground</th>
</tr>
</thead>
</table>

By Albert URDIROZ
Flight Safety Manager

1 Introduction

Airspeed is such a key parameter in aerodynamics, that the systems and indicators of Airbus aircraft use 3 independent airspeeds as inputs to the pilots’ displays as well as to the standby indicator. Aircraft systems also use these 3 data. At the source of the information chain are the pitot probes. Feedback from in-service experience indicates that:

- Incorrect maintenance of these probes is the most common cause for unreliable airspeed information;
- Take-offs are sometimes pursued in spite of one or two airspeed indications being unreliable.

Consequently, this article aims at reminding ground crews to accurately check the condition of pitot probes before flight, and to abort their take-offs when airspeed indication is detected unreliable.

2 Investigation of an in-service occurrence

For the purpose of this review we will refer to an event that was recently experienced on an A330. However, this type of event could have happened on any other Airbus aircraft.

Prior to the flight, the aircraft spent a few hours on the stand. Storm conditions prevailed during the ground time. Pitot probes were not protected with covers and became obstructed. This was not noticed before take-off.

During the take-off run, CAS1 (Computed Air Speed) and CAS2 were indicating too low speed. However, the take-off was continued.

Later investigation of the flight data recordings and crew report resulted in the following information about the lift-off speeds:

- Ground speed was above 160kt;
- CAS1 was about 60kt;
- CAS2 was estimated to be below 80kt;
- CAS 3 was reportedly reliable.

Note: V1 and Vr of the flight are unknown to Airbus.

After lift-off, the following cockpit effects occurred:

- NAV ADR DISAGREE warning triggered;
- EFCS (Electrical Flight Control Systems) reverted to alternate law;
- Auto-thrust disengaged;
- Flight directors became unavailable;
- Later in flight, with slats and flaps still extended, VFE was exceeded, so that OVERSPEED warning triggered.

Eventually, an in-flight turn back was initiated and an uneventful landing completed.

In the event referred to above, no reconfiguration to ADR3 was reported, and the information displayed on the standby indicator was the sole reliable.

3 Systems architecture and response

The following sketch presents the typical architecture valid for all Airbus aircraft.

3.1. Systems behavior during the event

The behavior of the systems described in paragraph 2 resulted from the AFS (Auto Flight Systems) and EFCS detecting the discrepancy between the 3 airspeeds. Since the monitoring is based on a comparison of the different speeds, and since all 3 were different, the systems could not recognize CAS3 as being the reliable speed. CAS3 being the odd among the 3 airspeeds, it was rejected at first. In this case, however, all 3 data were rapidly rejected by EFCS for computation till the end of the flight.

A particular situation would arise if 2 pitot probes were identically affected, which would result in 2 of the 3 airspeeds being equally low to the detriment of the 3rd and sole accurate one. This hypothesis is not unrealistic, and was encountered in service when probes were clogged by dust or insects’ nets. Besides, the above event was close to this situation, since CAS1 and CAS2 were "only" deviating of about 20 knots, while CAS3 was in the range of 80 knots higher.

For the sake of this demonstration, we will consider that CAS1 and CAS2 are identical and too low.

AFS and EFCS airspeed monitoring relies on a comparison of airspeeds. In our example, CAS3 would then be rejected, and computers would use the erroneous airspeeds from CAS1 & CAS2.

3.2. The particular case where 2 airspeeds are identically affected
Flight controls surfaces gain efficiency with speed. For instance, the roll rate achieved with 5 degrees of aileron deflection will be much higher if aircraft flies at VMO/MMO than at low speed. This implies that, when AFS and EFCS use a too low airspeed:
- Orders to the flight controls would be too strong and may cause over-reaction, either in manual or automatic flight;
- Limitation of rudder deflection will not be adapted to airspeed (Refer to sketch).
Possible consequences in this extreme situation are loss of control or exceedance of design loads. Given these risks, all efforts should be made to maintain reliable operation of airspeed indication systems, or flight should be cancelled as soon as unreliable airspeed condition is detected.

4 | Maintenance and operational recommendations

4.1. Maintenance

Protecting pitot probes with covers any time foreign objects are likely to penetrate is the main precaution to be taken. As indicated in the introduction, the most recurrent reasons for obstruction of probes is accumulation of dust, animal's remains, insects' nets etc. This recommendation should not only be adhered to in case of long time parking. In sand storm conditions, for instance, covers should be placed even when parking for a few minutes.

In addition, Airbus has improved the maintenance program with the reduction of the interval from 2C to 1C-check for draining and flushing the pitot pressure lines.

These recommendations are highlighted in a Service Information Letter (SIL 34-084) that Airbus has issued and which is regularly updated in order to optimize the maintenance of pitot probes.

4.2. Operations

Precautions during operations start with the pre-flight exterior check, when pitot probes inspection is requested. Crews should pay particular attention to them, bewaring of any signs of obstructions.

Then, after take-off thrust setting, both crewmembers should scan airspeed indications. In case of detection of an unreliable condition of one of the airspeeds before V1, take-off should be aborted.

5 | Conclusion

Airbus recommends that ground and flight crews be reminded of the possible consequences of flight with pitot probes obstructed:
- Loss of control;
- Exceedance of design loads.

Consequently, all efforts should be made to avoid flying in such conditions by:
- Protecting pitot probes with covers as soon as necessary;
- Adhering to improved pitot maintenance program;
- Checking pitot reliable condition during the pre-flight walk around check;
- Aborting take-off when unreliable airspeed condition is detected before V1.

To complete the subject of pitot probes obstruction, we will address the unreliable airspeed condition in flight in a future article.
A340 Thrust Reverser Unlocked

By: Vincent SWIDERSKI
A340 Propulsion System Engineer CFM56-5C
Per-Oliver GUENZEL
A330/A340 Flight Safety Coordinator

1 | Introduction

The CFM56-5C engine (fitted on A340-200 and 300) has a Thrust Reverser with 4 pivoting doors. As soon as one incorrectly locked thrust reverser door is detected, an "ENG X REV UNLOCKED" warning comes up on the ECAM warning display.

In the past, most "ENG X REV UNLOCKED" warnings were spurious. This is not the case any more, as this phenomenon has been understood and cured.

Today, most of the events are actual ones and the repetitive occurrences are due to a lack of troubleshooting as detailed hereafter.

2 | History

Since Entry Into Service, various operators are impacted by Rev Unlocked warnings. Airbus, CFM, Goodrich and Aircelle are carrying out a continuous improvement of the system. It began in August 1996 with issuance of the “ATO package” Service Bulletin (Ref A). This SB provided a first answer to the Rev Unlock phenomenon knowledge at that time. It has been followed by several other SB and led to decrease the Rev Unlock rate to under 0.05 events per 1000 Engine Flight Cycles.

However, this rate has been rising again in the last 2 years, as highlighted on Figure 1.

3 | Thrust Reverser system description

The CFM56-5C Thrust Reverser is hydraulically commanded. Each pivoting door is motioned by an actuator and secured in closed position by a locking system.

The selection of the Thrust Reverse mode sends hydraulic pressure, which opens the locking system and deploys the pivoting doors actuators.

The locking system is composed of 2 mechanical retention means (Fig 2):

The primary lock

It is the main locking element. It consists of a rotating cam located on the Thrust Reverser’s forward frame, which hooks on a roller fitting fixed on the pivoting door.

The secondary lock

It ensures that the door stays closed in case the primary lock fails. It is composed of 4 integrated “locking fingers” located in the pivoting door actuator body.

Fig 1: Trend of the “Rev Unlock” event rate since Entry Into Service

Fig 2: Actuation and locking systems of a CFM56-5C Thrust Reverser pivoting door
When the locking system is not pressurized, the secondary lock is engaged, ready to retain the actuator in its almost full-retracted position. If the primary lock fails, the door will extend slightly above the flush position before the secondary lock engages. In that case, the stow switch sensor is released (Fig 3), which leads to the generation of an “ENG X REV UNLOCKED” warning on the ECAM.

The continuous feedback from the operators allowed identifying that the primary lock rotating cam can fail to hook the roller-fitting due to:
- An insufficient actuator stroke;
- An incorrect rigging of the roller fitting;
- A primary lock contamination, which can prevent the rotating cam from moving freely;
- An undesirable hydraulic pressure spike in the actuation system, which can prevent the primary lock from hooking completely.

Maintenance will find a pivoting door ajar on the affected engine. Pushing the door back in its closed position will engage the primary lock and clear the issue for the next takeoff. But as the root cause has not been addressed it is likely that an “ENG X REV UNLOCKED” will appear after some thrust reverser actuations.

If the need to operate the aircraft does not allow any troubleshooting, the Thrust Reverser should be deactivated as per the MEL (Ref F).

Operational impact and maintenance actions

The above-described root causes usually lead to an unstable position of the primary lock between open and closed position. This unstable position switches to the open position (secondary lock activated) during the following flight due to engine acceleration/vibration. In most cases this happens during the takeoff run. An “ENG X REV UNLOCKED” warning is triggered and the crew performs a Rejected Take Off.

Preventive maintenance and permanent solution

The various investigations emphasized the importance of adhering to several maintenance practices in order to prevent the “Rev Unlocked” events.

CFM/Goodrich have released the Best Practices Manual (BPM) in January 2005. It has proven to be very effective when applied at every C-check, but it was only applied by 25% of the operators.

To ensure a fleet-wide application, the BPM has been included in a Service Bulletin (Ref C) that is referenced as a scheduled maintenance task at each ‘C’ in the MPD (ref. H).

In addition to those practices, a final solution will introduce a set of improvements to the locking system by addressing the above root causes. See also ref. G for further information.

Conclusion

Airbus permanent effort on the “Rev Unlocked” warning has eliminated the spurious triggering known from the early days of the A340-300.

Today, the majority of the events are due to actual Thrust Reverser door unlocks. Therefore:
- Adhere strictly to the ECAM procedure, which instructs to select idle on the affected engine, even if that engine has already been automatically reduced to idle by the FADEC;
- Apply proper troubleshooting before the next flight to avoid re-occurrence, or deactivate the Thrust Reverser if you can not complete the troubleshooting;
- Perform preventive maintenance, in the form of a MPD task every ‘C’ check, to minimize the operational interruptions due to “Rev Unlocked” events.

REFERENCES
A) SB RA34078-27
B) SB RA340A78-56
C) SB RA34078-88
D) TSM tasks 78-31-00-810-967/968/969/970
E) Goodrich AOL A340/CFM56-04-047 REVISION 1
F) MEL 78-30-01
G) TRU 78-30-03-052
H) MPD task 783241-C4-1
1 | Introduction

This document intends to describe the experience regarding the in service residual cabin pressure, the consequences and the different scenarios for this residual cabin pressure.

For that purpose, a short review of the system is presented.

It will further describe the procedures and actions already in place to cover these scenarios from the operational point of view (FOM) and training.

Then, it will introduce the new safety enhancements, which have been developed to allow the automatic release of this residual cabin pressure when in manual pressure mode by an automatic opening of the outflow valve and also the logics for a new red ECAM warning in case of residual cabin pressure.

2 | In service experience

In service experience shows that several events of residual cabin pressure have been reported and led to violent door opening with potential for serious injuries.

Most of the cases have been reported on A300 and were related to ground tests or ground air cart supplying the aircraft, where ground mechanics opened a cabin door while the aircraft was still pressurized.

Nevertheless, the latest events resulted from misapplication of the Manual mode procedure after landing:

These events have driven the safety enhancements, which have been developed for the Flight By Wire (FBW) aircraft.

3 | Cabin pressure review

3.1. RPWS (Residual Pressure Warning System)

In case of cabin residual pressure differential, a warning light flashes red at each door, as long as Dp > 2.5 hPa, provided that one engine (two on A340) is stopped and the slide is not armed at this door.

This Residual Pressure Warning System (red light) is basic on A320 Family & A330/A340.

RPWS does not cover all the scenarios; it remains inhibited if:
- The slides are still armed (emergency evacuation) or
- Engines are running.

In addition, the RPWS is only a passive protection; it also relies on cabin crew compliance to procedures.

3.2. Cabin pressure system

The following generic principles apply to all AIRBUS A/C:

a) Control and regulation of the cabin altitude:

The cabin altitude is managed and controlled by a semi or fully automatic system, which ensures seamless and rate-limited changes of the cabin altitude as the A/C climbs or descends, with an absolute limitation at 8000 ft maximum cabin altitude. This system performs the management and control of the internal cabin (in fact, cabin, cockpit, cargo) air pressure by tuning at each moment the position of outflow valves (OFV), which let air escape from the cabin.

In case of failure of the automatic systems, the crew must ensure the cabin pressure management manually, thanks to direct control of the outflow valves at slow closing or opening speeds, by means of an UP / DN control switch: UP for cabin altitude up (open OFV), DN for cabin altitude down (close OFV).

Should the cabin altitude exceed limits: positive: about + 8.8 PSI above external ambient pressure, negative: about - 1 PSI below external ambient pressure, safety valves will open to protect A/C structure and passengers/crew.
3.3. Operational cases where a residual cabin pressure may develop

- **RTO followed by an emergency evacuation:**
 the A/C is still pressurized (for instance, 15 hPa on WB, and 7 hPa on SA & LR). The level of residual ΔP at A/C stop will depend on several factors:
 - Whether or not the CPCS is still electrically supplied and functioning with necessary inputs (like landing gear signals which may be lost) to send the OFVs opening control signals;
 - Whether or not the system integrity is sufficient (possible OFV damage, loss of elec power, …) and if yes, whether or not enough time is left for the control (x sec. after touch down) of an effective full OFV opening.

Notes:
- If the crew is not disabled, as said earlier, they can open the cockpit sliding windows for A/C depressurization, but this is possible only if $\Delta P < 0.2$ PSI.
- In an emergency evacuation situation, the door slides will be kept armed, so the local warnings at each door (RPWS), signalling a residual cabin pressure > 2.5 hPa, will not be given.

- **After use of the MAN mode:**
 - If the crew is not disabled, as said earlier, they can open the cockpit sliding windows for A/C depressurization, but this is possible only if $\Delta P < 0.2$ PSI.
 - In an emergency evacuation situation, the door slides will be kept armed, so the local warnings at each door (RPWS), signalling a residual cabin pressure > 2.5 hPa, will not be given.

- **Non deliberate selection of the DITCHING function:**
 - If the crew is not disabled, as said earlier, they can open the cockpit sliding windows for A/C depressurization, but this is possible only if $\Delta P < 0.2$ PSI.
 - In an emergency evacuation situation, the door slides will be kept armed, so the local warnings at each door (RPWS), signalling a residual cabin pressure > 2.5 hPa, will not be given.

- **A/C operation under MEL condition:**
 the aft valve must be closed, and more time is needed for the A/C depressurization on the ground, particularly if the operational procedure is not followed (sel. one pack OFF immediately after A/C touch down).
4 Review of the FCOM procedures in manual mode

In case of dual system failures, an ECAM warning is triggered and a procedure requests to control manually the cabin pressure. In addition, the system page will show that the system 1 & 2 are inoperative. This manual control is done through the MAN V/S CTL.

Depending on the failure mode, it is possible that this procedure may not allow the depressurization. In any case, it is clearly requested through a caution to check that delta P is zero before opening doors.

If for any reason, there is still significant cabin pressurization, it is possible to refer to the cabin overpressure procedure. (Only on the A320 family, due to single outflow valve configuration - paper procedure)

During flight crew training concerning an emergency evacuation, the accent is put particularly on the aborted takeoff following an engine fire or an APU fire. The check of the delta P is highlighted. The delta P should be at zero before the evacuation order is given to the cabin crew.

Cabin crew training:
The training for cabin crew highlights that before opening any passenger door, the cabin crew has to check the cabin pressure indicator. He/she must inform the cockpit crew if the red light flashes.

Before opening the door, he/she must hold the door assist handle.

If, on ground, in auto mode, few minutes after landing (3 minutes on A330/A340) the outflow valve is not fully open, "CAB PRESS OUTFLOW VALVE NOT OPEN" ECAM warning is displayed: It requests to open it in manual mode, or to switch off the packs if unsuccessful.

5 Safety enhancement: modification description

2 modifications have been launched, both for A320 family and A330/A340, to cope with cases of inappropriate compliance of the procedures in manual mode after landing.

5.1. Automatic outflow valve opening in manual mode

This ground logic unit is an electronic box containing hardwired-programmed logic.

It will be supplied from the DC ESS bus, and will force the automatic opening of the outflow valves on the ground in cabin pressure manual mode, or in failure cases. It drives 2 relays, one per outflow valve, to provide electrical power directly to their manual mode electrical motor, taking over their control.

So this new function will mitigate against the hazard of flight crew using the MAN pressure mode in flight and then not following the FCOM procedure after landing, i.e. fully open the OFVs. It will take over the control of the OFV automatically by means of providing electrical power directly to their manual motors using external relays.

It will also mitigate against the hazard of maintenance personnel being interrupted in the accomplishment of a pressurization test on the ground, or CPCS failure / power supply cut-off.

This new device is installed on A320 family aircraft through modification 54573 / SB 21-1154 and on A330/A340 through modification 53145: SB 21-3113 for A330 SB 21-4122 for A340 basic SB 21-5021 for A3456

Wiring:
SB 21-3112 for A330 SB 21-4121 for A340 SB 21-5020 for A3456

The logic for the RPCU is as follows:
Briefly, each outflow valve will fully open if:
- Landing gear shock absorbers compressed or parking brake applied;
- Thrust levers is in TO position;
- No engine is running above idle and no ADIRS delivers Vc > 70 kt;
- The valve is in MAN control and both CPCs are in stby; and
- The valve angle is < 100°
5.2. New red ECAM warning in case of residual cabin pressure independent of the pressurization system

In addition to this hardware device, a new red ECAM warning has been created in case of impossibility to release the cabin pressure (blanket, manual motor jam, misapplication of the manual procedure…):

CAB PR EXCES RESIDUAL PR

The first table shows the existing procedure in case of residual cabin pressure.

The second table shows the ECAM procedure with the FWC logic in case of residual cabin pressure.

This new red ECAM warning is available for:
- A320 family with FWC H2F3 (A318 PW certification) through modification
- A330/A340 with FWC through modification
- A320/A340 with FWC through modification
 - Mod 52306/ SB 31-4083 for A340/ 200-300
 - Mod 51973 / SB 31-5015 for A340/ 500-600
 - Mod 51790 / SB 31-3066 for A330

The tables here below show the ECAM procedures without and with this new red ECAM procedure.

New red ECAM warning

- PACK 1 OFF
- PACK 2 OFF

Existing amber caution

- PACK 1 OFF
- PACK 2 OFF

CAB PR EXCES RESIDUAL PR

In case of excessive cabin residual pressure after engines OFF, on ground for more than 7 seconds, CAB PR EXCES RESIDUAL PR red warning will be activated after a time delay of 5 seconds. The ∆P sensor used for this new warning is that of the RPWS.
Conclusion

In service experience shows that several events of residual cabin pressure have been reported and led to violent door opening with potential for serious injuries. Most of the cases have been reported on A300 and were related to ground tests or ground air cart supplying the aircraft, where ground mechanics opened a cabin door while the aircraft was still pressurized.

The latest results emerged from misapplication of the Manual mode procedure after landing:

In case of dual pressure system failures, an ECAM warning is triggered and a procedure requests to control manually the cabin pressure.

In addition, the system page will show that system 1 & 2 are inoperative. This manual control is done through the MAN V/S CTL.

In any case, there are several procedures in place in order to allow the release of the residual cabin pressure, if any. In addition, it is clearly requested through a caution to check that delta P is zero before opening doors.

In case of cabin pressure double failure, the procedures must be followed up to the end (manual opening of the outflow valve and control of the cabin pressure on ground).

To cope with non-compliance with the above manual procedures, 2 new modifications have been developed for FBW aircraft: the outflow valve opens automatically on ground, and an ECAM warning warns of residual cabin pressure.

Both modifications are installed and activated on production aircraft.

Even if it is always possible for a customer to ask for the non-embodiment of these safety enhancements on a brand new aircraft, in particular the installation of the RPCU, it is Airbus position that both modifications will bring an additional safety net.

Consequently, Airbus highly recommends the installation of the RPCU and of the relevant FWC, as described here below:

Automatic opening of the outflow valve even in manual mode when on ground.

It will be supplied from the DC ESS bus, and will force the automatic opening of the outflow valves on the ground in cabin pressure manual mode, or in failure cases.

This new device is installed on:

- A320 family aircraft through modification 34673 / SB 21-1164 and

New red ECAM warning case of residual cabin pressure.

In case of excessive cabin residual pressure on ground 7 seconds after engines OFF, CAB PR EXCES RESIDUAL PR red warning will be activated. The ΔP sensor used for this new warning is that of the RPWS.

This new red ECAM warning is available for:

- A320 family with FWC H2F3 (A318) PW certification through modification 35220/ SB 31-1267
- A330/A340 with FWC through modification Mod 52306/ SB 31-4083 for A340/ 200-300, Mod 51973 / SB 31-5015 for A340/ 500-600, Mod 51790 / SB 31-3066 for A330

Adverse weather operations
- Optimum Use of Weather Radar, …
- Runway and surface operations
- Preventing runway incursions, …

Supplementary techniques
- Preventing altitude deviations, …
- Takeoff and departure operations
- Revisiting the stop or go decision, …

Descent management
- Energy Management, …
- Approach techniques
- Crosswind landings, …

In 2006, the very first Flight Operations Briefing Notes addressing threat and hazards to cabin operations safety have been released.
Cabin Operations Domain

This new Cabin Operations domain of the Flight Operations Briefing Notes has been created to meet the respective needs of cabin crewmembers first, then of flight crewmembers and of other flight operations personnel.

The cabin operations domain provides an overview of the following aspects that need to be understood and mastered in order to enhance cabin operations safety:

- Effective Briefings for Cabin Operations
- Crew Communication
- Dangerous Goods
- Ground Operations Safety
- Cabin Smoke Awareness
- Managing In-Flight Fires
- Ditching
- Decompression
- Turbulence
- Planned Ground Evacuation
- Unplanned Ground Evacuation
- Precautionary Evacuation

Cabin crew managers and training instructors should review, customize (as required) and implement the recommendations, guidelines and awareness information, in the following domains:

- Cabin operational documentation
- Training
- Information (Cabin crew bulletins, Airline’s safety magazine articles, Classroom lectures; and/or Stand-alone reading).

Line cabin crew should review and compare the recommendations, guidelines and awareness information with their current practices and enhance their techniques and awareness level, as required.

The cabin operations domain is an ideal complement of the Getting to Grips with Cabin Safety brochure released in 2005.

Such safety awareness references provide operators with guidance to implement their own cabin safety program.

Where to consult/download them?

The Flight Operations Briefing Notes and all other safety and operational expertise publications (e.g., Getting to Grips with …) are regularly released on the Flight Operations Portal, which can be found in the secure area of www.airbusworld.com.

If you have access rights, go to «Secure area» (top left of home page) / «Customer login» / «Flight Operations (Home)» (on left). To obtain access rights, contact your IT administrator or refer to «Registration information» (top left).

The Flight Operations Briefing Notes are also released on the Safety Library room of the Airbus Safety First website http://www.airbus.com/en/corporate/ethics/safety_lib/
Hypoxia: an Invisible Enemy

Cabin depressurization effects on human physiology

Hartwig Asshauer
Certification Manager
Hydro-Mechanical & Air Systems
Airbus Engineering

This article first appeared in issue 38

When public air transportation first became commonly available, flights did not reach altitudes that represented a significant risk of reduced oxygen supply - called hypoxia - to either passengers or crew. However, in the late 1940s and 1950s aircraft were developed that allowed safe transport of the flying public at altitudes around 40,000ft, which have remained relatively constant since then.

DEFINITIONS OF HYPOXIA

Hypoxia is separated into four types:

• Hypoxic hypoxia is a condition caused by reduced barometric pressure, affecting the body’s ability to transfer oxygen from the lungs to the bloodstream.

• Histotoxic hypoxia can be induced by the introduction of substances like alcohol or drugs into tissue, reducing its ability to accept oxygen from the bloodstream.

• Anaemic hypoxia (or anemic hypoxia) is a result of the blood being unable to carry oxygen, e.g. caused by exposure to carbon monoxide.

• Stagnant hypoxia results from the body’s inability to carry oxygen to the brain, which can result from high gravity-forces causing blood to pool in the lower extremities of the body.

1 Introduction

Operating at high altitude without adequate understanding, training or equipment protection can be dangerous as shown by the following extracts from two accident reports:

“One of the first encounters with the dangers of high altitude flight was reported in 1862 when a balloon flight was made to study the effects of low high altitude flight was reported in 1862 when a balloon flight was made to study the effects of low human physiology

1 Introduction

Within the lungs the alveoli provide the interface between air and blood. The blood which is returned from the body tissue into the alveolae has given away most of its oxygen so that the oxygen partial pressure in the lungs is higher than in the alveolae. A process of diffusion then drives oxygen through the thin alveolar wall into the blood.

The most important parameters for the oxygen diffusion process are the oxygen percentage and barometric ambient pressure. Changing these parameters changes immediately the oxygen saturation level in blood and with it the oxygen supply to the body tissue. Unfortunately, there is no significant storage of oxygen in the human body, unlike many other chemical substances necessary to maintain life. The blood is the only storehouse for oxygen, and its capacity is very limited. Hence, the human body lives only a hand-to-mouth existence with its oxygen supply.

As the pressure air in the atmosphere decreases with increasing altitude, the partial pressure of oxygen in the air reduces and with it the diffusion of oxygen into the body. Reduction of oxygen availability in the body results in loss of functions ranging from slight impairment up to death. It is the nervous system, in particular in the higher centres of the brain, and the eyes which have a high metabolism with no oxygen reserve. These are most sensitive to oxygen depletion and therefore are the first to be affected by a reduced oxygen supply.

For healthy persons altitude exposure up to 15,000ft is usually not hazardous since cardiovascular and respiratory compensatory mechanisms (faster breathing and increased pulse rate/blood circulation) act to maintain adequate oxygenation at the cellular level. The effects of reduced oxygen supply to the body (hypoxia) vary between persons, depending on health, physical fitness, age, activity level and statistical scatter with the population. Pilots and flight attendants usually require more oxygen during an emergency than healthy, seated passengers and might therefore suffer earlier from hypoxia effects.

2 The hypoxia effects of a quick cabin depressurization

During a quick depressurization the partial pressure of oxygen in the lungs/alveoli reduces rapidly with the effect of reverse diffusion. This means that once the oxygen partial pressure in the alveoli has reached a level that is below the level in the blood, the blood oxygen moves out of the body back into the ambient air. This effect of reverse diffusion unfortunately further reduces the already very limited oxygen storing capability of blood and supports hypoxia effects. Holding of breath cannot stop the reverse flow since the pulmonary gas expansion would lead to serious lung injury.
Severe hypoxia caused by a significant reduction in cabin pressure is very dangerous for flight crew because:

- The victims of hypoxia rarely notice that they are about to pass out.
- Usually there is a loss of critical judgment.
- Most victims often experience a mildly euphoric state.
- Thinking is slowed, muscular coordination is impaired.

The only effective means of protection is the quick donning of oxygen masks as the first action - before troubleshooting!

3 | Oxygen partial pressure

The concentration of oxygen in the atmosphere is constant at 20.95% at altitudes up to 100,000ft, which means that according to Dalton’s Law* the oxygen partial pressure at sea level is 218mbar (20.95% of 1013mbar where 1013mbar is the standard atmospheric pressure at sea level).

As altitude increases above sea level the partial pressure of the component gases decreases consistent with the decrease in total atmospheric pressure. For example, the partial pressure of oxygen at 40,000ft is reduced to 39mbar only, which is far too inadequate to support human metabolism.

One means to increase oxygen partial pressure is to increase the oxygen concentration in breathing air. At 40,000ft cabin altitude an oxygen partial pressure of maximum 188mbar can be achieved by breathing pure oxygen (100% oxygen concentration without overpressure).

Another additional means for hypoxia protection is positive pressure breathing, which is usually found in modern crew oxygen masks and means the delivery of pure oxygen under pressure into the respiratory tract. For civil applications positive pressure breathing is able to increase additionally the oxygen partial pressure by around 20 to 30mbar provided that the overpressure condition is limited to some minutes only. This means that at 40,000ft it requires 100% oxygen concentration of the breathing gas combined with positive pressure breathing to achieve sea level equivalent conditions. Positive pressure breathing requires some training and is tiring and inconvenient, which is the rationale for having so far provided this protection feature to flight crew only (for short time use only).

4 | Time of Useful Consciousness

In the ‘World of Hypoxia’ the Time of Useful Consciousness (TUC) is a very important parameter. For low ambient pressure conditions it indicates the time available to perform purposeful activities, such as oxygen mask donning or aircraft control. Beyond this time frame mental and physical capabilities are dangerously impaired and finally result in unconsciousness and potentially death.

As shown in the table on the right, TUC is negatively correlated with altitude. It is important to note that even if activities are performed within the TUC time frame, performance is much lower than at the beginning.

The TUC is the ‘Window of Opportunity’ for donning an oxygen mask and can be very limited so must take overriding precedence over any other activities.

5 | Time of Safe Unconsciousness

Some experts believe that for passengers - in contradiction to the flight crew - a short period of unconsciousness during cabin depressurization can be tolerated since they are not performing an operational task. Unconsciousness is a clear sign of insufficient oxygen supply to the brain and it is obvious that this time can only be very short before permanent brain damage occurs. So far, it has not been possible to associate a specific time frame for the safe time of unconsciousness.

The uncertainties in extrapolation of animal data and the wide variability in individual tolerances have so far prevented determination of a commonly agreed value for Time of Safe Unconsciousness (TSU) among human physiology experts. It is believed that a safe time of unconsciousness is somewhere between 90 seconds and 4 minutes.
6 | Oxygen equipment on civil aircraft

On modern aircraft oxygen equipment is installed to provide adequate protection against the damaging effects of hypoxia in case of cabin depressurization.

For flight crew there are usually quick donning oxygen masks installed, which can be donned with one hand in less than 5 seconds. The mask straps are combined with elastic tubes that inflate and stiffen when the mask is taken from its stowage, allowing the mask to be easily put over the head with one hand. Once the grip on the mask is released, the tubes deflate and their elastic characteristics ensure a perfect fit. The required oxygen concentration of the breathing air is automatically adapted to the cabin pressure.

For the passenger oxygen supply the continuous flow concept is used on all Airbus aircraft. Oxygen is delivered continuously to an expandable oxygen bag where it is conserved during exhalation, so it is available during the next inhalation to supplement the steady oxygen flow.

It was decided at an early stage in passenger oxygen mask development that the untrained civilian population should not be expected to recognize the correct orientation for a shaped mask, and it was required that a mask should be operable in any position in which it might be donned by the user. A second basic requirement was a universal size, which finally defined the well-known cylindrical mask body.

Extract of the prime requirements

GENERAL
- CS/FCAR 25.841 (a): Maximum cabin pressure altitude under normal operation: 8,000 ft.
- CS/FCAR 25.841 (a): Maximum cabin pressure altitude after any probable failure condition in the pressurization system: 15,000 ft.
- FAR 25.841 (a) (2): Maximum exposure time to cabin pressure altitude exceeding 25,000 ft: 2 minutes.
- FAR 25.841 (a) (3): Exposure to cabin pressure altitude that exceeds 40,000 ft: Not allowed.

CABIN OCCUPANTS
- CS/FCAR 25.144 (c): Provides oxygen system performance data on oxygen flow and required partial pressure of oxygen.
- CS/FCAR 25.144 (c) (1): The total number of masks in the cabin must exceed the number of seats by at least 10%.
- CS/FCAR 25.144 (d): Defines oxygen flow for first-aid oxygen equipment (for cabin depressurization treatment).
- JAR OPS 1.760/FAR 121.333 (e) (3): Requires first-aid oxygen for at least 2% of passengers.
- JAR OPS 1.770 (b) (2) (a)/(c) FAR 121.329 (c): Defines the percentage of passengers that need to be provided with supplemental oxygen (cabin pressure altitude dependent).

FLIGHT CREW
- CS/FCAR 25.144 (a) & (b): Provides oxygen system performance data on oxygen flow and required partial pressure of oxygen.
- CS/FCAR 25.144 (b) (1): For aircraft operating above 25,000 ft quick donning oxygen masks are required for the flight crew which can be donned with one hand within 5 seconds.
- FAR 121.333 (c) (2) (1) (a): One flight crew member needs to wear permanently his oxygen mask when the aircraft is operated above FL410.
- FAR 121.333 (c) (3): In case one flight crew member leaves the controls the remaining pilot needs to use his oxygen mask when the aircraft is operated above 25,000 ft.

7 | Airworthiness requirements

The Airworthiness authorities have identified the risk of hypoxia and have created requirements (see table on the left).

Also, after an accident in the USA the FAA initiated a Special Certification Review (SCR) on pressurization systems. The SCR recommends that the aircraft flight manual (for aircraft certified for flights above 25,000 ft) require in the emergency procedures the donning of oxygen masks as the first crew action after a cabin altitude warning.

This highlights again the importance of immediate donning of oxygen masks when cabin depressurization occurs.

8 | Conclusion

The first step for any flight crew member faced with cabin depressurization should be the immediate donning of an oxygen mask. Any delay in donning a mask will significantly increase the risk of losing consciousness before cabin pressure is regained.

Severe hypoxia leads usually to the loss of critical judgement combined with a mildly euphoric state, which makes hypoxia very dangerous for flight crew. This is highlighted also in the FAA Special Certification Review that was issued some years ago on the effects of cabin depressurization.

Moreover, in case of rapid cabin depressurization a quickly accomplished emergency descent is often the only means of fast re-oxygenation of passengers that were unable to protect themselves against hypoxia by using the passenger oxygen masks provided. Severe hypoxia is very dangerous for unprotected passengers and requires a quick return to an adequate cabin pressure or where not possible (above high terrain), it requires a check by the flight attendants that the passenger oxygen masks are correctly used.

For a long time transport aircraft have been equipped with oxygen systems for flight crew and passengers that provide an adequate protection against hypoxia. As long as these oxygen systems are used according to their simple procedures the invisible enemy hypoxia poses little danger to flight crews and passengers.
The Airbus Flight Safety Team

Yannick MALINGE
Vice-President Flight Safety
Phone + 33 (0)5 61 93 43 60
Fax + 33 (0)5 61 93 44 29
E-mail yannick.malinge@airbus.com
Mobile +33 (0)6 29 80 86 52

Thierry THOREAU
Deputy Vice President Flight Safety
Head of International Cooperation
Phone + 33 (0)5 61 93 49 54
Fax + 33 (0)5 61 93 44 29
E-mail thierry.thoreau@airbus.com
Mobile +33 (0)6 16 93 87 24

Albert URDIROZ
Flight Safety Manager
Phone + 33 (0)5 62 11 01 20
Fax + 33 (0)5 61 93 44 29
E-mail albert.urdiroz@airbus.com
Mobile +33 (0)6 16 93 87 24

Marc BAILLION
Flight Safety Manager
Phone + 33 (0)5 67 19 14 75
Fax + 33 (0)5 61 93 44 29
E-mail marc.baillion@airbus.com
Mobile +33 (0)6 23 98 01 10

Frederic COMBES
Flight Safety Manager
Phone + 33 (0)5 62 11 97 42
Fax + 33 (0)5 61 93 44 29
E-mail frederic.combes@airbus.com
Mobile +33 (0)6 16 93 87 37

Armand GASTELLU
Crisis Logistic Support Manager
Phone + 33 (0)5 67 19 12 26
Fax + 33 (0)5 67 19 12 26
E-mail armand.gastellu@airbus.com
Mobile +33 (0)6 23 98 00 86

Nuria SOLER
Assistant to Flight Safety Dept.
Phone + 33 (0)5 61 93 45 19
Fax + 33 (0)5 61 93 44 29
E-mail nuria.soler@airbus.com

Jean DANETY
Director of Flight Safety
Head of In-Service Safety & Incident Investigation
Phone + 33 (0)5 61 93 35 71
Fax + 33 (0)5 61 93 44 29
E-mail jean.daney@airbus.com
Mobile +33 (0)6 23 98 01 16

Christopher COURTENAY
Director of Flight Safety
Head of Safety Information Dissemination
Phone + 33 (0)5 62 11 02 94
Fax + 33 (0)5 61 93 44 29
E-mail christopher.courttenay@airbus.com
Mobile +33 (0)6 16 03 64 22

Panxika CHARALAMBIDES
Flight Safety Manager
Phone + 33 (0)5 62 11 80 99
Fax + 33 (0)5 61 93 44 29
E-mail panxika.charalambides@airbus.com
Mobile +33 (0)6 23 98 01 63

Michel PALOMEQUE
Flight Safety Advisor
To Single Aisle Chief Engineer
Phone + 33 (0)5 62 11 01 91
Fax + 33 (0)5 61 93 27 60
E-mail michel.palomeque@airbus.com
Mobile +33 (0)6 23 08 06 26

Jérôme PAULHET
Flight Safety Advisor
To Long Range Chief Engineer
Phone + 33 (0)5 62 11 01 91
Fax + 33 (0)5 61 93 27 60
E-mail jerome.paulhet@airbus.com
Mobile +33 (0)6 23 08 06 26

Nicolas BARDOU
Flight Safety Manager
Phone + 33 (0)5 67 19 02 60
Fax + 33 (0)5 61 93 44 29
E-mail nicolas.bardou@airbus.com
Mobile +33 (0)6 23 98 01 71

Jacques KUHL
Flight Safety Advisor
To Wide Body Chief Engineer
Phone + 33 (0)5 61 93 48 28
Fax + 33 (0)5 61 93 44 29
E-mail jacques.kuhl@airbus.com
Mobile +33 (0)6 20 61 35 21

Safety First
The Airbus Safety Magazine
#03 December 2006

Flight Safety hotline
06 29 80 86 66