Dear FAST reader,

This issue of FAST marks the end of an era - it is the last FAST which will be produced under the guidance of our editor Denis Dempster. Denis, who is retiring in the summer, has been FAST editor almost since the beginning, taking over from the third issue. His first issue of FAST was in 1984, when Airbus had only the A300 and A310 aircraft in service. Since then, the A320 and A330/A340 aircraft families have gone into service, with a resulting increase of articles covering their advanced technology. Denis has seen FAST through the expansion of the Airbus family and the ups and downs of our industry. He has unfailingly produced excellent, informative and well received articles, which is confirmed by the results of the survey enclosed in FAST 33. These results give very high scores for the level of content, readability, attractiveness and quality of FAST. Denis brought exceptional abilities, patience and humour to FAST and he will be sorely missed, but after 49 years in the industry, his retirement is well earned, so my colleagues and I here in Airbus would like to thank him for his exceptional work and wish him well in his retirement. I feel confident that you, the readers of his work over the past 20 years, will feel the same and therefore we will wish him well on your behalf.

We are fortunate that Agnès Massol-Lacombe, who is the art director of FAST and has worked on it since the beginning, will carry on with us to provide continuity in the future with our new editor. Agnès provides the artistic organisation, which makes FAST the attractive magazine it is, confirmed by the survey mentioned above.

Our new FAST editor is Kenneth Johnson. Kenneth has wide and long experience of the commercial aircraft industry from propjet airliners, through Concorde to the fly-by-wire airliners of today. He has over 20 years experience with Airbus aircraft, having been involved with all of them from the A300 to the A340, both in France and Germany. His experience covers various technical and industry areas including structural, cabin, electrical and avionic systems and he has spent the last 17 years here in Toulouse involved in the production of technical, communication and marketing documents for Airbus Customer Services. He, Denis and Agnès have worked together in the production of this FAST to ensure a smooth handover and Kenneth will take over as FAST editor for future issues.

I and my colleagues welcome Kenneth to the Airbus Customer Services Communications team and wish him well in his new task.

Yours sincerely,

Bruno Piquet,
FAST Publisher
Aging aircraft electrical systems investigation
Airbus recommendations to enhance the design &
maintenance of aircraft electrical wiring systems
Dominique Chevant

Avoid overheating
Jean-Luc Barré
Patrick Scudier

How to tackle bleed air leaks
Improving durability of seals on hot air ducts
Patrick Grave

Customised Spares Logistics
A new Airbus concept based on supply chain
experiences
Helmut Diekhoff
Andreas Teufel

Aircraft Systems Maintenance Aids
available from Airbus

A380 accommodation at airports

Airbus Customer Services events

From the archives... 100 years ago

Customer Services
Around the clock... Around the world
Aging aircraft electrical systems investigation

Aircraft systems, including electrical wiring systems, are becoming more and more complex and electrical wires and their associated components are becoming increasingly important with respect to aircraft systems that are necessary for safe flight. There has been, and continues to be, events associated with wire failures, and aging wiring has become a key issue that transcends individual federal agencies.

As a logical follow-on to a 1997 recommendation by the White House Commission on Aviation Safety and Security, chaired by Vice President Gore, the US Federal Aviation Administration and industry representatives are working together to determine whether existing design and maintenance practices may be improved to ensure the continued airworthiness of older aircraft.

This is being done under the "Aging Transport System Rulemaking Advisory Committee" (ATSRAC) activities.

BACKGROUND

The investigation into a fatal accident on 17 July 1996 resulted in a heightened awareness of the importance of maintaining the integrity of aircraft and, in February 1997, the US White House Commission on Aviation Safety and Security (WHCSS) recommended to the Federal Aviation Administration (FAA) to work in cooperation with airlines and manufacturers to expand the FAA’s Aging Airplane Programme to include non-structural components.

In July 1998, the FAA issued the Aging Transport Non-Structural Systems Plan to address the WHCSS recommendation. The Aging Systems Plan focussed specifically on wiring systems.

To help fulfil the actions specified in this Aging Systems Plan, the FAA set up an Aging Transport Systems Rulemaking Advisory Committee (ATSRAC), which is composed of key members of the aviation industry, to give recommendations on aircraft safety issues and propose enhancements to current procedures.

ATSRAC PHASE 1

ATSRAC focused its efforts on jet transport category aircraft whose type certificates were at least 20 years old and in 1998 was given five major tasks. They included collecting data on aging electrical wiring systems through aircraft inspections, reviewing aircraft manufacturer’s fleet service history, reviewing operator’s maintenance criteria, standard practices for electrical wiring and repair training programmes.

To accomplish these tasks ATSRAC chose to establish five separate working groups composed of ATSRAC members and industry representatives, to provide technical support in conducting analyses and developing recommendations.

TASK 1 SAMPLING INSPECTION OF THE FLEET

The first working group conducted an in-depth survey of the condition of the electrical wiring in an aging aircraft fleet. This sampling program included a non-intrusive inspection of the electrical wiring on 81 in-service aircraft (eight aircraft types: B727, B737, B747, DC-8, DC-9, DC-10, A300 and L1011) and an intrusive evaluation of the electrical wiring removed from six decommissioned aircraft, with additional laboratory analysis of wiring samples.

A total of 3,372 notable items were found during the survey, most of them were related to maintenance activity, passage of personnel, lack of housekeeping and/or inadequate protection. Fluid or chemical contamination, significant dust, lint and metal shavings were seen on most aircraft.

None of the observed items were determined to be issues affecting aircraft or personnel safety and no immediate airworthiness issues were noted. However, for reasons of repeat occurrences in the same general area, 182 items were thought to be “Significant”.

Additional engineering analysis was conducted to propose solutions as necessary via either maintenance enhanced inspection guidelines and processes or Service Bulletins (SBs).

The result of this analysis with regard to five fixes for the A300, and the availability status for each, is provided in table 1.

The evaluation of the survey results and findings indicated that in many cases, the current design, maintenance and modification procedures could identify existing or potential electrical wiring problems. However, the survey confirmed that these inspection procedures could not always prevent an actual or potential wiring problem from occurring again.

Wire failures are known to be contributory factors in some aircraft incidents and wire related failures can be attributed to multiple factors. These include, but are not limited to: localised heat damage, breached wire insulation, embrittlement, chafing, arcing, reduced insulation resistance, defective or broken connectors. Nevertheless, problems associated with systems on aging aircraft are not completely related to the degradation of wire over time. Wire system degradation could also result from inadequate design, installation, maintenance and modification practices.
problem from occurring. Specific recommendations included enhancement of scheduled maintenance programmes, improved training programmes, and enhanced procedures for wiring protection, cleaning and routing.

TASK 2

REVIEW OF FLEET SERVICE HISTORY

This second task was to review existing service data, such as manufacturer’s Service Bulletins, manufacturer’s Service Information Letters, All-Operators Telexes, Operator Information Telexes, and the fleet history relating to aircraft electrical wiring.

Each aircraft manufacturer reviewed thousands of documents to determine the need for specific recommendations, or upgrade of compliance. As far as Airbus aircraft are concerned, three A300 SBs were proposed for compliance change, from “Recommended” to “Mandatory” (see Table 2).

In addition five A300 SBs were issued with a “recommended” compliance instead of “Desirable” or “Optional”. When applicable, the A300 recommendations were validated on A310/A300-600 aircraft (see Table 2).

TASK 3

IMPROVEMENT OF MAINTENANCE CRITERIA

Using knowledge gained from Task 1, the third working group addressed maintenance practices and the effectiveness of maintenance programmes. Recommendations were developed to enhance general practices concerning in-service handling of electrical wiring. These included guidance on the minimisation of contamination during repairs/servicing and an enhancement of inspection criteria, particularly with respect to improving the effectiveness of General Visual Inspections (GVIs).

In order to ensure that wiring systems are adequately addressed during development of a maintenance programme, the team developed an Enhanced Zonal Analysis Procedure (EZAP) that complements existing procedures used to develop Zonal Inspection Programmes. The logic process assesses each aircraft zone that contains wiring and, through a series of questions, determines the need for tasks to minimize the presence of combustible material (cleaning tasks), and the need for either stand-alone GVIs or dedicated Detailed Inspections of specific wiring installations in addition to GVIs performed as part of zonal inspections.

TASK 4

STANDARD PRACTICES FOR ELECTRICAL WIRING

The task of this working group was to review any documentation related to wiring standard practices, which is used to inspect or repair aircraft wiring, and to identify areas for possible improvement.

The main working group recommendations were to all aircraft manufacturers to adopt a common document format including the same standard practices for care and maintenance of wiring systems.

TASK 5

INSPECTION AND REPAIR TRAINING

The fifth task consisted of reviewing airline and repair station training programmes for inspection and repair of non-structural systems, to ensure that they adequately covered aging wiring system components. The working group confirmed that training programmes should be enhanced in the area of wiring maintenance practices and deliver a standardised training curriculum containing a series of recommended, detailed lesson plans covering additional training for aging systems. The content would be adjusted for any model of aircraft and student skill level.

Table 1 - A300 inspection and modification status

<table>
<thead>
<tr>
<th>Significant item</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Clamp slippage on rod</td>
<td>Inspection Service Bulletin (SB) issued 21-Feb-03 with compliance recommended to assess clamp. New, as per SB 77-76 to be replaced as necessary as per ESPM (Electrical Parts Manuals) procedure. ESPM (Electrical Parts Manual) procedures evaluated for improved gripping of the clamp attachment when formed loose.</td>
</tr>
<tr>
<td>2. Bundle sagging</td>
<td>Enhanced inspection guidelines as per Task 3 report will be introduced in MPP section. ESPM 20 Repair section provides enhanced inspection criteria for bundle sagging and technical process for repair as necessary.</td>
</tr>
<tr>
<td>3. Conduit cramping at conduit end</td>
<td>Enhanced inspection guidelines as per Task 3 report will be introduced in MPP section. ESPM 20 Repair section provides improved cramping alternation in conduit ends of conduit conduits.</td>
</tr>
<tr>
<td>4. Bundle at panel (11) YU</td>
<td>Modification Service Bulletin (SB) (Mod 124350281880) issued 15-Jun-03 with compliance recommended; to introduce additional bundle protection and attachment. Illustrated Parts Catalogue (IPC) will reflect the latest installation configuration as per MPP/MBR/embodiment & reporting process for IPC revision.</td>
</tr>
<tr>
<td>5. Bracket unattachment at panel 308/09</td>
<td>Mod SB (Mod 12431/218179) issued 15-Jun-03 with compliance recommended; to introduce riveting 3285-779. Illustrated Parts Catalogue (IPC) will reflect the latest installation configuration as per MPP/MBR/embodiment & reporting process for IPC revision.</td>
</tr>
</tbody>
</table>

Table 2 - Service Bulletins upgraded from “Recommended” to “Mandatory”

<table>
<thead>
<tr>
<th>SB reference</th>
<th>Issue date</th>
<th>Title</th>
<th>References of A310 and A300-600 SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-0053 Rev 7</td>
<td>14-Apr-81</td>
<td>Electrical power - Pylon - Inspection of leader cables</td>
<td>24-2021 Rev 7: 31-Jul-01</td>
</tr>
<tr>
<td></td>
<td>31-Jul-81</td>
<td></td>
<td>24-0056 Rev 7: 31-Jul-01</td>
</tr>
<tr>
<td>24-0070 Rev 3</td>
<td>20-Mar-83</td>
<td>Improve lightening of APU starter leader terminal blocks</td>
<td>24-2041 Rev 6: 25-Feb-01</td>
</tr>
<tr>
<td></td>
<td>25-Feb-83</td>
<td></td>
<td>24-0034 Rev 6: 25-Feb-03</td>
</tr>
<tr>
<td>24-0003 Rev 4</td>
<td>29-Feb-84</td>
<td>Inspect and repair wiring in wing/pylon interface area</td>
<td>24-2032 Rev 6: 31-Jul-01</td>
</tr>
<tr>
<td></td>
<td>31-Jul-84</td>
<td></td>
<td>24-0033 Rev 6: 31-Jul-01</td>
</tr>
</tbody>
</table>

Service Bulletins upgraded from “Desirable” or “Optional” to “Recommended”

<table>
<thead>
<tr>
<th>SB reference</th>
<th>Issue date</th>
<th>Title</th>
<th>References of A310 and A300-600 SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-0095 Rev 3</td>
<td>12-Dec-94</td>
<td>Improve strength of the electrical bundles at flap screw jack</td>
<td>24-0043 Rev 4 (issued 09-Nov-21)</td>
</tr>
<tr>
<td>25-0119 Rev 6</td>
<td>22-Dec-78</td>
<td>Improvement of wire bundle protection in PAV cargo compartment</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>03-Nov-80</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>27-0100 Rev 4</td>
<td>26-Jun-76</td>
<td>Resulting of wire assembly 873 V2 between FR 84 V - strut and variable lever armrest</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>05-Nov-80</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>25-0597 Rev 2</td>
<td>21-Jun-78</td>
<td>Installation of thermo shrinkable tube for protection of fuel pump heading</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>08-Jan-81</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>52-006 Rev 2</td>
<td>12-Jul-78</td>
<td>Improve wiring installation between FR 29 and FR 31 in the cargo compartment</td>
<td>N/A</td>
</tr>
</tbody>
</table>
AGING AIRCRAFT ELECTRICAL SYSTEMS INVESTIGATION

The results and recommendations from the above initial tasking indicated that problems associated with wiring systems on aging aircraft were not completely related to the degradation over time of wiring systems. The review of these systems also found inadequate installation and maintenance practices could lead to what is commonly referred to as an “aging system” problem. Therefore the scope of ATSRAC is not limited solely to age-related issues, but also involves improving the continued airworthiness of aircraft systems, and in particular wiring systems.

The FAA accepted the ATSRAC recommendations from the first five tasks and subsequently assigned four additional tasks to ATSRAC in January 2001. These new tasks were intended to facilitate implementation of earlier recommendations. As a result, four new working groups were established.

TASK 6
ADDRESS THE NEED FOR NEW WIRE SYSTEM CERTIFICATION REQUIREMENTS

Specifically, Task 6 was formed to address wire related certification issues. The working group was therefore tasked to review all previous recommendations in the Code of Federal Airworthiness Regulations (FAR) 14 Part 25, in Joint Airworthiness Regulations (JAR) Part 25 and ATSRAC, to identify all requirements related to wiring systems, and to combine these current regulations into one section.

The product for this working group was the creation of a new FAR/JAR Part 25 Subpart H that contains all existing Part 25 requirements, including the creation of new requirements for wire system safety assessment, wire separation and wire identification. An Advisory Circular was developed to support these new/proposed regulations.

TASK 7
ADDRESS THE NEED FOR AN ELECTRICAL STANDARD WIRING PRACTICES MANUAL

At the conclusion of the Task 4 report, the working group stated that the current presentation and arrangement of Standard Wiring Practices make it difficult to locate and extract pertinent data necessary for electrical repairs. The team therefore defined a standard format and minimum content of the Electrical Standard Wiring Practices Manual (ESWPM) so that aircraft maintenance technicians can easily use manuals from different manufacturers.

In addition, the working group proposed that paper-based legacy documents be upgraded to reflect format and content. Nevertheless, documents created and used in electronic form, and because of the searchable nature of the electronic document, need not implement a standardized format. The structure of these electronically-based documents is in fact transparent to the user.

ATSRAC PHASE 2

The results and recommendations from the above initial tasking indicated that problems associated with wiring systems on aging aircraft were not completely related to the degradation over time of wiring systems. The review of these systems also found inadequate installation and maintenance practices could lead to what is commonly referred to as an “aging system” problem. Therefore the scope of ATSRAC is not limited solely to age-related issues, but also involves improving the continued airworthiness of aircraft systems, and in particular wiring systems.

The FAA accepted the ATSRAC recommendations from the first five tasks and subsequently assigned four additional tasks to ATSRAC in January 2001. These new tasks were intended to facilitate implementation of earlier recommendations. As a result, four new working groups were established.

TASK 6
ADDRESS THE NEED FOR NEW WIRE SYSTEM CERTIFICATION REQUIREMENTS

Specifically, Task 6 was formed to address wire related certification issues. The working group was therefore tasked to review all previous recommendations in the Code of Federal Airworthiness Regulations (FAR) 14 Part 25, in Joint Airworthiness Regulations (JAR) Part 25 and ATSRAC, to identify all requirements related to wiring systems, and to combine these current regulations into one section.

The product for this working group was the creation of a new FAR/JAR Part 25 Subpart H that contains all existing Part 25 requirements, including the creation of new requirements for wire system safety assessment, wire separation and wire identification. An Advisory Circular was developed to support these new/proposed regulations.

TASK 7
ADDRESS THE NEED FOR AN ELECTRICAL STANDARD WIRING PRACTICES MANUAL

At the conclusion of the Task 4 report, the working group stated that the current presentation and arrangement of Standard Wiring Practices make it difficult to locate and extract pertinent data necessary for electrical repairs. The team therefore defined a standard format and minimum content of the Electrical Standard Wiring Practices Manual (ESWPM) so that aircraft maintenance technicians can easily use manuals from different manufacturers.

In addition, the working group proposed that paper-based legacy documents be upgraded to reflect format and content. Nevertheless, documents created and used in electronic form, and because of the searchable nature of the electronic document, need not implement a standardized format. The structure of these electronically-based documents is in fact transparent to the user.
Previous tasking to ATSRAC resulted in recommendations regarding the need for development of an enhanced training programme addressing wiring systems. In conformity with these previous recommendations, a wiring maintenance training programme was developed including wire system practices and documentation, inspection, applicable repair schemes, wiring modifications and wiring repairs. This training is customised for different target groups and could be used for initial and refresher training.

This working group was tasked to propose regulatory text and supporting advisory material to reflect the recommendations provided in the earlier Task 3 report. In its original concept, the Enhanced Zonal Analysis Procedure (EZAP) envisioned an analysis of all wiring installed in zones in which combustible materials may be present. The logic would identify where additional repetitive tasks in these zones would minimise accumulation of these materials and/or would improve the likelihood that wiring system degradation, including age related issues, will be identified and corrected in a timely manner.

Analysing all wiring retrofitted into the aircraft under Supplemental Type Certificate (STC) modifications, was deemed not cost beneficial when combined with the recommended training for technicians. Mandatory implementation of both EZAP and Electrical Wiring Training is therefore still under discussion within the FAA and is part now of a new ATSRAC task. However, it is likely that aircraft manufacturers will have to develop EZAP within 24 months after the rule goes into effect. Then, operators are likely to be required to incorporate the EZAP tasks into their maintenance programmes within one year after EZAP development.

FAST 34

FAA ACTION PLAN

The ATSRAC efforts are part of an overarching plan developed by the FAA. This Enhanced Airworthiness Programme for Aircraft Systems (EAPAS) outlines the recommendations of the ATSRAC but is also intended to focus on all aircraft systems, including mechanical systems, which will undergo detailed evaluation after wiring systems. The current focus of this programme resolves around aging wiring systems and provides strategies for how the FAA and industry will work to improve the airworthiness of wire systems through near-term and long-term actions, with the intent to disseminate the products thorough the industry.

The EAPAS also includes an extensive Aging Electrical System Research Programme. This programme is intended to conduct research into aging wiring systems to determine mechanisms that drive the aging process, develop testing tools to better inspect and maintain wiring, and develop technologies that mitigate the hazards associated with wiring failure.

The FAA is now considering the ATSRAC recommendations on the second set of tasks forwarded in November 2002. The FAA recognized the benefits that ATSRAC provided through previous tasking and therefore requested that committee’s assistance throughout the EAPAS rulemaking process. Therefore, the FAA requested ATSRAC in April 2003 to manage additional tasks and ATSRAC formed two new working groups to provide technical support to develop recommendations on these tasks:

- Assemble technical and economic information and alternatives to the previous recommended actions, identify the minimum set of training to support EZAP and provide recommendations on the extension of EZAP applicability to STC installations.
- Review and develop implementation plans for viable tools and methods resulting from ongoing FAA research programme.

Completion of the above tasks is expected by January 2005. Nevertheless, the overall FAA Aging Aircraft programme encompasses numerous rulemaking programmes (Fuel Tank Safety Operational Rules, Aging Systems, Aging Structure, Widespread Fatigue Damage, Corrosion Prevention Control Programme), which may result in several rulemakings that require performance of non-scheduled maintenance checks. The FAA therefore set up a “Tiger Team” to review implementation methods and compliance times with the objectives to develop an integrated plan to align all rulemaking programmes and to prioritize rules if necessary. The “Tiger Team” results are not yet available but publication of the Notice of Proposed Rulemaking and Advisory Circulars is not expected before mid-2005.

AIRBUS ACTION

Airbus has supported ATSRAC since 1998 through active participation within the ATSRAC committees and various working groups and has already initiated the following actions:

ELECTRICAL STANDARD PRACTICES MANUAL

To anticipate ATSRAC Tasks 4 and 7 recommendations, Airbus decided to develop a new electrical standard wiring practices manual to take over from the AMM Chapter 20. A generic Electrical Standard Practices Manual (ESPM) was launched in April 2001. This new manual encompasses the old Chapter 20 and new chapters like tasks, cleaning tasks, electrical component repair and replacement procedures, etc. to make easier the application of wiring inspectors. This manual was recently updated to improve recommendations regarding wiring installation and protection and to add guidelines on wiring separation.

Airbus Training Division has developed a wiring training course based on the ATSRAC Task 5 and 8 recommendations. This training called “Electrical Wiring Interconnection Systems” course is to help operators better understand and maintain their aircraft electrical installations. This course is customised to cover all Airbus aircraft and incorporates practical and hands-on sessions to teach technicians how to adequately evaluate the wiring system and effectively use the applicable aircraft wiring practices documentation.

AIRBUS EZAP POLICY AND PROCEDURES

Airbus has initiated the process of developing EZAP for all their aircraft types. Airbus is currently testing of the EZAP on a sample of aircraft including A300/A310, A320 and A330/A340 families. The Airbus EZAP policy and procedures have been presented to and accepted by all Industry Steering Committees and with the exception of the A300, will be applied to all Airbus types through the Maintenance Review Board (MRB) process. Depending on the aircraft type, final validation of EZAP procedures are scheduled from mid-2004 till mid-2005.

For the A300, new and modified tasks that are recommended to be
In spite of the precautions taken in the selection of aircraft electrical cables and their installation, unforeseen overheating may occur. Overheating may also be due to an abnormal electrical load on a piece of equipment. This could then result in the total or partial de-activation of the electrical installation owing to a short circuit, so electrical installations must be protected against this hazard. To this end, electrical circuit protection devices achieve this function.

This article presents three families of electrical protection devices:

• Thermal Circuit Breakers (CB), widely used to date,
• Arc Fault Circuit Breakers (AFCB), under development,
• Solid State Power Controller (SSPC), introduced with A380.

It is widely recognized in the electrical industry that wiring has to be protected against overheating. Aircraft electrical circuits are no exception, as this article explains.
THERMAL CIRCUIT BREAKER

A thermal CB will cause the circuit to open when a predetermined current is detected. The circuit opening is achieved by a thermal sensing element (e.g. bimetal) whose characteristics are dependent on the current.

These CBs are selected according to their:
- tripping time with respect to the current intensity,
- compensation with respect to the ambient temperature.

These characteristics are specific to each CB and are given in the Airbus Standards Manual.

The CBs can be of three poles (115VAC three-phase) or single pole (28VDC or 115VAC single-phase). In addition to the main contacts (used in a power circuit), circuit breakers may have auxiliary contacts that are used to make a permanent check of the main contact position.

CB MONITORING

On A330/A340 Family aircraft the CBs are located in the avionics compartment underneath the cockpit and in the bulk cargo compartment. This is why monitoring means are required to enable the crew to check CB status. The CBMU (Circuit Breaker Monitoring Unit) located in each circuit breaker auxiliary contact allows monitoring of individual circuit breakers. The principal functions of the CBMU are:
- acquisition of the circuit breaker position,
- monitoring of the circuit breaker,
- circuit breaker identification and transmission to the ECAM (Electronic Centralised Aircraft Monitor) to build CB page display,
- proper functioning of the built-in-test-equipment (BITE).

In the event a circuit breaker trips (disconnects), a warning signal is generated on the ECAM and EWD (Engine/Warning Display). The crew can then call up the circuit breaker tripped list on the SD (System Display).

For other aircraft types (A300/A310 and A320 family aircraft) most of the CBs are located in the cockpit. However, monitoring of some CBs is performed via various methods of CB status acquisition depending on aircraft type.

A high number of the overheats experienced on 50Amp CBs were found to be due to insufficient tightening of attachment screws leading to loose connections. The wire terminals should be tightened to the correct torque value given in the AMM (Aircraft Maintenance Manual) chapter 20-21-12 or ESPM (Electrical Standard Practices Manual) chapter 20-46-10.

The high number of reports of 50Amp CBs tripping has resulted in a number of corrective improvements and inspections such as:
- decrease of electrical load of some AC (alternating current) Bus bars (Mods 8648 & 11134),
- installation of a larger wire gauge on some CBs (Mod 11132),
- inspection of the most heavily loaded 50Amp CBs, replacement of the existing 50Amp CBs by improved ones.

The latest standard is part number NSA931323-501 Amendment B.

TRIPPED CB REENGAGEMENT

Ref Document: DOT/FO1 999.0172-99

The likely cause for CB tripping is an abnormality in the electrical load or in the associated wiring. Consequently, reengagement of a tripped CB may aggravate any
electrical damage by propagating it, with possible risk of affecting other equipment. It may even result in a temperature increase and smoke emission in the area concerned.

Airbus recommendations with regard to the reengagement of a tripped CB in flight and on the ground are as follows:

- In flight, Airbus does not authorise a pilot to reengage a CB which tripped by itself, unless the Captain, using his/her emergency authority, judges it necessary for safe continuation of the flight. In this emergency case, only one reengagement should be attempted.
- On the ground, the pilot may reengage the CB provided the cause of the CB tripping is identified.

These recommendations are also detailed in the applicable chapters of the FCOM (Flight Crew Operating Manual) and TSM (Trouble Shooting Manual).

ARC FAULT CIRCUIT BREAKERS

Research into new technologies to improve wiring safety is a key issue for individual Federal agencies and industry. To this end, the Federal Aviation Agency (FAA) has launched an extensive Aging Electrical System Research Program (refer to the “Aging aircraft electrical systems” article page 2 to 10). This programme is intended to conduct research into aging wiring systems to determine mechanisms that drive the aging process, develop tools to better inspect and maintain wiring, and develop technologies that mitigate the hazards associated with wiring failure.

As part of this programme, the FAA, in partnership with the Office of Naval Research, initiated a study of arc-fault circuit interruption technology, which promises to overcome some of the issues caused by wiring degradation.

PRINCIPLE

The Arc Fault Circuit Breakers provide additional protection against arcing conditions in addition to the thermal overload protection provided by thermal CBs. Arc Fault Circuit Interruption (AFCI) technology monitors the electrical circuit for arcing events that are indicative of potential wiring issues that could result in a short circuit. In essence, the device keeps a count of each momentary insulation breakdown and breaks the circuit when the count of these exceeds a predefined number. The heating caused by these intermittent contacts may be below the normal rating of a thermal CB.

Arc Fault Circuit Breaker (AFCB) technology has been already introduced into housing and industrial markets over the past 10 years. Adapting the technology for use in aircraft will improve safety by reducing arcing occurrences and their consequences, and will reduce costs by limiting damage to both electrical wiring and the surrounding area.

AIRBUS ACTION

Due to the specifics of circuit breakers installed on Airbus aircraft (in terms of specifications and overall dimensions), Airbus decided in 2000 to launch its own AFCB programme, similar to that of the FAA.

The first feasibility phase of such a programme defined single pole and three pole AFCBs that, in addition to the functions provided by traditional circuit breakers, have the ability to detect complex current-time waveforms that are characteristic of wiring anomalies/arcing in an aircraft environment. Other challenges were to develop products likely to replace current circuit breakers at competitive prices within the 1-50 amp range, and to solve the main issues of reliability and overall dimensions.

Only AFCB implementation on a 115VAC aircraft electrical network was considered in the first phase of the programme. A prototype test programme has been defined with suppliers and AFCB prototypes have been tested on an electrical laboratory test bench, then during an aircraft test flight. The next step is now to conduct an evaluation of the AFCB end-component maturity on aircraft during a six month period to be completed by the end of 2004.

After having demonstrated good maturity, an industrial product qualification will proceed and Airbus may then determine which systems the AFCB will be used on.

SOLID STATE POWER CONTROLLER

The electrical power distribution system in the A380 introduces a big jump forward for the protection function by using the Solid State Power Controller (SSPC).

The SSPC module is a conjunction of electronic and semiconductor devices in the same electronic card. Unlike the conventional thermal CB or AFCB that are considered electrical standard items, the SSPC...
Module is part of the electrical power centre, and is considered as equipment.

The SSPC Module works primarily as a protection device for the aircraft wiring against overload, and as a system power supply switch for technical operation and load management.

The SSPC has the same function as a circuit breaker, but by using a comparison of a triggering curve rather than the traditional mechanical tripping function.

So, basically, the SSPC technology combines the functions of the circuit breaker and relay in classical electromechanical technology.

With this new technology, the trip threshold of the device protection is programmable. It also allows switching ON/OFF of the loads, and controls and monitors the switch status.

SSPC cards are customisable for the cabin loads. For each SSPC channel, two current ratings are available: 3A to 5A and 7.5A to 15A with in-between software programming capability.

Due to the large number of circuits to protect, it would have been necessary to have a huge panel and space available if classical electromechanical technology were used. This new technology allows reduction of the man-machine interface whilst saving weight.

POWER DISTRIBUTION MAINTENANCE INTERFACE (PDMI)

The new SSPC technology allows a newer maintenance man-machine interface. One of the functions of the Power Distribution Maintenance Interface (PDMI) is to allow the engineer to control the SSPC as a conventional circuit breaker. They may be tripped and tagged to permit maintenance, or to isolate a system for dispatch under MEL criteria. So, PDMI can be considered as a virtual Circuit Breaker Panel.

Some PDMI Functions are:

- provide manual override ON/OFF control of each SSPC channel,
- secure the open state of SSPC channels (flag or lock-out),
- provide manual reengagement to tripped channels,
- review configuration status and load assignment,
- display Built-In-Test Status,
- summary of tripped channels and manually opened channels
- sort by ATA chapter,
- sort by Power Bus and/or MMEL,
- maintenance status (e.g. name of operator, maintenance duration, reason for lock-out).

The electrical devices protection such as thermal CB, AFCB, or SSPC have the same main basic function: ensure protection of aircraft electrical installations. Whatever the technology used, tripped electrical devices protection should only be reengaged once, if at all, as described above and in the appropriate manuals such as the AMM and TSM.

A relatively new technology – Arc Fault Circuit Interruption (AFCI) technology – has been developed to improve the overall level of aircraft wiring protection. This new technology that is predictive in nature, will reduce arcing occurrences and possible collateral damage.

At the time of writing the FAA had not mandated installation of AFCBs and even though the FAA strongly supports activities to define Arc Fault Detection CBs, it is expected that replacement of conventional circuit breakers by AFCBs will be up to the airlines.

The sheer size of the A380 and the significantly greater electrical installation has meant that conventional circuit protection devices would take up far too much space and be excessively heavy. This has led to the development of the Solid State Power Controller, which provides the necessary protection, a user-friendly man-machine interface, and several possibilities of customization.
HOW TO TACKLE BLEED AIR LEAKS

How to tackle bleed air leaks
Improving durability of seals on hot air ducts

Leaks from bleed air ducts cause approximately one third of ATA36 operational interruptions. A high proportion of these leaks can be attributed to previous generation seals. These seals are fitted at numerous locations in the bleed (ATA36), anti-ice (ATA30) and air conditioning (ATA21) systems. Consequently, the need for a reliable seal is of the utmost importance to the efficient operation of an aircraft.

At the beginning of Airbus operations, bleed air ducts were equipped with a pair of seals with part numbers (PN) NSA8054-08 and PN NSA8054-09, being used together. This type of seal was, at that time, the only one available on the market.

Later, as the technology evolved, different seals were proposed. Each were to the latest technology, but never providing the durability desired. The latest in the series was ABS 0737.

To cater for this situation Airbus introduced a periodic seal replacement in the MPD (Maintenance Planning Document) to avoid operational interruptions. In parallel a call for tender was launched with various seal manufacturers. The primary goal was to find a new seal able to withstand the new qualification process called “accelerated aging test”. This test being a combination of endurance, temperature and pressure conditions more demanding than those used previously and adapted to the latest materials.

Qualification Testing
Two types of qualification testing, (dynamic and static) were imposed:

DYNAMIC TESTING
- Total of 240,000 movement cycles at 24 cycles/minute.
- Combination of ±10 mm (0.4 inch) linear and ±3° angular displacement to simulate wing bending.
- 200,000 cycles at 215°C (420°F) and 40,000 cycles at 260°C (500°F) representing aircraft operation (see illustration below).
- One pressure cycle for every two movement cycles, ambient to 4.2bar (61psi) (see illustration above).

STATIC TESTING
- Proof pressure 6.2bar (90psi) at 215°C (420°F) for 1 minute.
- Burst pressure 13.2bar (190psi) at 215°C (420°F) for 1 minute.

Qualification Result
At the end of this qualification testing, only one seal satisfied the qualification criteria (see A on the illustration Qualification test bench on page 21). That seal being identified as PN ABS1040 is manufactured by Advanced Products.

Qualification Criteria
- Static leak rate at 4.2bar (61psi) in cold and hot state well below maximum allowed.
- No extrusion tendencies.
- Minimal wear.
- No cracks, extrusion or deformation after proof and burst test.

Patrick Grave
Group Manager
Pneumatics, Ice and Fire Protection
Customer Services Engineering
The PN ABS1040 seal is made of PTFE (polytetrafluoroethylene), in two parts:

- the seal is equipped with a spring to keep it expanded,
- a filler ring to reduce the volume of the recess.

PERFORMANCE COMPARISON

Following the qualification test, another test programme was performed to compare the performance of the ABS1040 seals to the ABS0737 seals ("back to back testing"). For that purpose, a specific "back to back" test bench was developed in order to be able to compare the performance of the two types of seal in real time and in similar conditions.

Seals were installed on production ducts during the pressure and temperature cycles.

IN-SERVICE EVALUATION

Also, before making this new seal available for general airline use, it was decided to perform an in-service evaluation to confirm that the tests reflected the real life environment. This evaluation was performed with five different airlines operating in different environmental conditions (Cathay Pacific, Air Macau, Lufthansa, MyTravel and Austrian Airlines) and on two aircraft types (two A330/A340 Family and four A320 Family).

This evaluation has accumulated more than 26,000 flight hours and 12,500 flight cycles without any seal failure or detection of any bleed air leaks, demonstrating the good behavior of seal ABS1040 during aircraft operation.
During the life cycle of an aircraft, time, location and requirement of spare parts are not usually planable. Therefore on-time delivery of spare parts requires integration and management of flexible supply chains between the vendor’s activities and customer’s requirements. The physical distribution of parts, qualified communication and sophisticated information technology (IT) based monitoring systems are all key elements involved in harmonising the spares related processes, resulting in cost savings and high transparency. Following these requirements Airbus Spares Support and Services in Hamburg, as the headquarters for world-wide spares supply for Airbus aircraft, has developed Customised Spares Logistics (CSL).
SUPPLY CHAIN DRIVING FORCES

Based on 30 years of experience in supply chain management and logistics, Airbus Spares is clearly aware of some weaknesses in the conventional supply chain. The eye opener was during an Airbus symposium when the customers complained of a delivery performance of 66% versus Airbus’ reported delivery performance of 98%.

It appears that 30% of the performance gets lost within the supply chain between the supplier and the customer’s final location. The following describes what occurs within the conventional supply chain:

- Suppliers prepare the shipments for dispatch and hand them over to the customer appointed forwarders. With this hand-over, the shipment passes the so-called “yellow line” of the suppliers warehouse or airport; this means the supplier is no longer responsible for the shipment.
- The forwarder who picks up the shipment, is conventionally subcontracted by the final customer and acts therefore on behalf of the customer. At this point the achieved delivery performance very much depends on the ability of this subcontracted forwarder to effectively transport the shipments to the customer.

This situation causes considerable uncertainty so an increased effort of tracking and tracing of shipments is required, particularly for priority customer requests such as AOG (Aircraft on Ground) orders.

Aircraft operators, aware of the supply chain and delivery risks, are forced to compensate with either increased manpower for tracking and tracing efforts, or increased and costly spares provisioning and inventory levels.

OBJECTIVE OF CUSTOMISED SPARES LOGISTICS

The objective of the Customised Spares Logistics scheme is to address the tracking and tracing problems described above and bring relief to customers by providing updated information about the shipment at any time, and supplied by one single source. The customer can then rest assured that the shipment will arrive on time with a guaranteed delivery performance of 98%.

The performance level is assured through continuous performance measurement by Airbus. Customised Spares Logistics is focused on a balance of optimal cost and service, corresponding to the three strategic goals - safety, aircraft operational reliability and reduction of operating costs.

CHARACTERISTICS OF CSL

- Airbus as Single Point of Contact for the entire supply chain.
- Competitive freight rates due to Airbus and European Aeronautic Defense and Space Company (EADS) volume discounts.
- On-line Tracking and Tracing transparency.
- Customisation of the supply chain, covering all steps from pick up to customs clearance, considering service freight restrictions, special clauses and exceptions, and defining handover interfaces.
- Reduction of interfaces throughout the supply chain.

SERVICE SCOPE

Airbus manages dedicated approved forwarders, negotiating freight rates, steering the complete supply chain up to the point of demand. Priority shipments like AOG and WSP (Work Stoppage) are monitored on their way to the customer. Routine (RTN) shipments are consolidated to further reduce customers’ costs. Delivery is performed to the agreed location and within the agreed timeframe.

ADVANCED TRACKING AND TRACING ABILITIES

The management of transport is performed by Airbus and all shipments are actively monitored. Additionally the customer has the possibility to get advanced, milestone based, tracking data via the Internet based Airbus Spares Portal, http://spares.airbus.com.

By integrating the web-sites of forwarders and integrators, customers receive 24h on-line real-time tracking and tracing information through the Airbus Spares Portal. In addition, Airbus monitors each priority shipment until it arrives at the customer’s specified final destination, taking into account the special aerospace logistics requirements.
information on the current shipment status and location.

- They also experience a reduction in hidden costs, be it through savings for not having to invest time and capacity in tracking and tracing of shipments, or be it for not having to keep extra inventory to compensate for potential lack of spares due to shipment delays.

- Customers further profit from the economies of scale obtained by Airbus. These economies of scale lead to competitive freight rates. The rates are passed directly on to customers, leading to reduced transport costs.

- Since Airbus is responsible for the delivery of spares and tools right to customer’s doorstep, there is one single contact for the entire supply chain, resulting in a continuous increase in supply chain efficiency.

- The whole service is backed-up by regular benchmark studies and continuous performance measurements to ensure optimised operations.

CUSTOMER ADVANTAGES FROM CSL

Customers benefit from using CSL in various ways:

- They can rely on scheduled delivery times with the added convenience of on-line, real-time

CONTACT DETAILS

Andreas Teufel
Director Spares Marketing
Spares Support & Services
Tel: +49 (40) 5076 2320
Fax: +49 (40) 5076 2155
andreas.teufel@airbus.com

Helmut Diekhoff
Manager Customised Spares Logistics
Spares Support & Services
Tel: +49 (40) 5076 2377
Fax: +49 (40) 5076 2626
helmut.diekhoff@airbus.com

CUSTOMER QUOTE

“As far as we are concerned we only see advantages [of using Customised Spares Logistics]. Our freight costs are lower, leading to economic benefits. Additionally, Airbus manages the complete supply chain in cooperation with the forwarder, which includes the physical handling of the shipments as well as the electronic shipment tracking and coordination. Therefore we do not need to pay attention to the actual supply and dispatch of the required spare parts. As a consequence, we have been able to decrease our administrative costs. We only notify Airbus Spares Support and Services when we require particular spare parts - that’s all we need to do!”

Martin Schmidt
Director Material & Logistics
Austrian Airlines Technik
(translated from LOGISTIK inside 17/2003)
Aircraft System Maintenance Aids available from Airbus

A300/A310 Family

<table>
<thead>
<tr>
<th>AIRCRAFT TYPE</th>
<th>TITLE</th>
<th>ATA</th>
<th>ISSUE</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A300-600/A310</td>
<td>Autoflight System Operation / Trouble Shooting Guidelines</td>
<td>22</td>
<td>APR 03</td>
<td>SEE9/95.2016/03</td>
</tr>
<tr>
<td>A300</td>
<td>Flap System Trouble Shooting Procedure</td>
<td>27</td>
<td>DEC 88</td>
<td>No reference</td>
</tr>
<tr>
<td>A300/A300-600</td>
<td>Flap System / Flap jamming Trouble Shooting Guidelines</td>
<td>27</td>
<td>MAR 89</td>
<td>ST34/0001/89</td>
</tr>
<tr>
<td>A300-600</td>
<td>Slats / Flap System Trouble Shooting Guidelines</td>
<td>27</td>
<td>FEB 97</td>
<td>SEE4/95.0834/97</td>
</tr>
<tr>
<td>A300</td>
<td>Slats System / Seat Trouble Shooting Guidelines</td>
<td>27</td>
<td>FEB 97</td>
<td>SEE4/95.0834/97</td>
</tr>
<tr>
<td>A300</td>
<td>Flap System</td>
<td>27</td>
<td>FEB 97</td>
<td>SEE4/95.0834/97</td>
</tr>
<tr>
<td>A310</td>
<td>Slats / Flap System Trouble Shooting Guidelines</td>
<td>27</td>
<td>MAR 98</td>
<td>SEE5/93.1397/98</td>
</tr>
<tr>
<td>A310</td>
<td>Spoiler Control Computers Trouble Shooting Guidelines</td>
<td>27</td>
<td>AUG 98</td>
<td>SEE5/93.4553/98</td>
</tr>
<tr>
<td>A310</td>
<td>Spoiler Control Computers Trouble Shooting Guidelines (for FEBD only)</td>
<td>27</td>
<td>AUG 98</td>
<td>SEE5/93.6135/98</td>
</tr>
<tr>
<td>A310</td>
<td>Spoiler Control Computers Trouble Shooting Guidelines</td>
<td>27</td>
<td>AUG 98</td>
<td>SEE5/93.4553/98</td>
</tr>
<tr>
<td>A310-600</td>
<td>Flap System Trouble Shooting Guidelines</td>
<td>28</td>
<td>NOV 90</td>
<td>ST2/48.1341/90</td>
</tr>
<tr>
<td>A310/A310-600</td>
<td>Hydraulic System Maintenance Practices</td>
<td>29</td>
<td>MAR 99</td>
<td>SEE4-95.0684/99</td>
</tr>
<tr>
<td>A310/A310-600</td>
<td>Engine Bleed System Trouble Shooting Guidelines</td>
<td>36</td>
<td>APR 90</td>
<td>ST3/0002/90</td>
</tr>
<tr>
<td>A310/A310-600</td>
<td>Engine Bleed System Trouble Shooting Guidelines</td>
<td>36</td>
<td>JUL 02</td>
<td>SEE2/94.6691/95</td>
</tr>
<tr>
<td>A300B/B4</td>
<td>Engine Bleed System Trouble Shooting Guidelines</td>
<td>36</td>
<td>JUN 02</td>
<td>SEE2/93.5177/96</td>
</tr>
</tbody>
</table>

A320 Family

<table>
<thead>
<tr>
<th>AIRCRAFT TYPE</th>
<th>TITLE</th>
<th>ATA</th>
<th>ISSUE</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A319/A320/A321</td>
<td>Air Conditioning Trouble Shooting Guidelines</td>
<td>21</td>
<td>2002</td>
<td>SEE2/94.8223/97</td>
</tr>
<tr>
<td>A318/A318/A320/A321</td>
<td>IDG (Integrated Drive Generator) Servicing Procedure</td>
<td>24</td>
<td>JAN 01</td>
<td>SEE5/93.0616/01</td>
</tr>
<tr>
<td>A318/A319/A320/A321</td>
<td>Slides / Slide Raft Arming / Disarming Procedures (for DAMS & ET only)</td>
<td>25</td>
<td>SEP 03</td>
<td>SEE2/94.7706/03</td>
</tr>
<tr>
<td>A318/A319/A320/A321</td>
<td>Slides / Slide Raft Arming / Disarming Procedures</td>
<td>25</td>
<td>OCT 03</td>
<td>SEE2/94.9990/03</td>
</tr>
<tr>
<td>A318/A318/A320/A321</td>
<td>Slats / Flap System Trouble Shooting Guidelines</td>
<td>27</td>
<td>JAN 90</td>
<td>ST34/93.396/89</td>
</tr>
<tr>
<td>A318/A318/A320/A321</td>
<td>Slats / Flap System Trouble Shooting Guidelines</td>
<td>27</td>
<td>FEB 97</td>
<td>SEE4/95.0834/97</td>
</tr>
<tr>
<td>A318/A318/A320/A321</td>
<td>Slats / Flap System - System Evolution</td>
<td>27</td>
<td>MAY 97</td>
<td>SEE5/94.2528/97</td>
</tr>
<tr>
<td>A318/A318/A320/A321</td>
<td>Procedure for Re-greasing A320 Flap Actuators</td>
<td>27</td>
<td>FEB 98</td>
<td>No reference</td>
</tr>
<tr>
<td>A318/A318/A320/A321</td>
<td>A320 Family Flight Control System - Elevator Rigging</td>
<td>27</td>
<td>APR 03</td>
<td>GC50/0597/03 Issue 2004</td>
</tr>
<tr>
<td>A318/A318/A320/A321</td>
<td>Shark Fin Tool for Easy Flap Adjustment</td>
<td>27</td>
<td>JAN 00</td>
<td>SEE9/95.0073/00</td>
</tr>
<tr>
<td>A320</td>
<td>ADS Trouble Shooting Guidelines (for TURBINE ONLY)</td>
<td>31</td>
<td>JUN 99</td>
<td>ST2/33/0049</td>
</tr>
<tr>
<td>A318/A320/A321</td>
<td>Braking and Steering System Trouble Shooting Guidelines</td>
<td>32</td>
<td>FEB 03</td>
<td>SEE2/95.0159/03</td>
</tr>
<tr>
<td>A318/A320/A321</td>
<td>Braking and Steering System Trouble Shooting Guidelines</td>
<td>32</td>
<td>DEC 97</td>
<td>SEE2/95.4606/97</td>
</tr>
<tr>
<td>A318/A320/A321</td>
<td>Engine Bleed Air System Trouble Shooting Guidelines for WC only</td>
<td>36</td>
<td>JUN 02</td>
<td>SEE2/94.0229/95</td>
</tr>
<tr>
<td>A318/A320/A321</td>
<td>Vacuum Toilet System Trouble Shooting Guidelines</td>
<td>38</td>
<td>APR 03</td>
<td>SEE2/94.3269/03</td>
</tr>
<tr>
<td>A318/A320/A321</td>
<td>Passenger Door Operation & Maintenance</td>
<td>52</td>
<td>MAR 02</td>
<td>SEE5/95.0124/02</td>
</tr>
</tbody>
</table>

(*) In addition to this document, the “SLAT FLAP SYSTEM – EVOLUTION” brochure is distributed to detail the components and part number evolution versus modification embodiment.

A330/A340 Family

<table>
<thead>
<tr>
<th>AIRCRAFT TYPE</th>
<th>TITLE</th>
<th>ATA</th>
<th>ISSUE</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A330/A340 (all)</td>
<td>IDG (Integrated Drive Generator) Servicing Procedure</td>
<td>24</td>
<td>JAN 03</td>
<td>SEE2/93.0616/01</td>
</tr>
<tr>
<td>A330/A340 (all)</td>
<td>NBPT Simulation Tool (No Break Power Transfer)</td>
<td>24</td>
<td>2003</td>
<td>GC50/SL34/03</td>
</tr>
<tr>
<td>A330/A340-200 & -300</td>
<td>Cargo Hold Maintenance</td>
<td>25</td>
<td>SEP 05</td>
<td>A05/564/00</td>
</tr>
<tr>
<td>A330/A340 (all)</td>
<td>Slats / Flap System Trouble Shooting Guidelines</td>
<td>27</td>
<td>FEB 97</td>
<td>SEE2/95.0834/97</td>
</tr>
<tr>
<td>A330/A340 (all)</td>
<td>Hydraulic System Maintenance Practices</td>
<td>29</td>
<td>2002</td>
<td>SEE4/95.1240/02</td>
</tr>
<tr>
<td>A330/PW/RR</td>
<td>Engine Bleed Air System Operation / Trouble Shooting Guidelines</td>
<td>36</td>
<td>APR 02</td>
<td>SEE9/94.2963/99</td>
</tr>
</tbody>
</table>

All Aircraft Families

<table>
<thead>
<tr>
<th>TITLE</th>
<th>ATA</th>
<th>ISSUE</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAST Prevention on Hydraulic Tube Fitting</td>
<td>29</td>
<td>2004</td>
<td>GC50/1026/89</td>
</tr>
<tr>
<td>Fuel Tank Maintenance Practices</td>
<td>57</td>
<td>2002</td>
<td>SE2A/92.1409/02</td>
</tr>
</tbody>
</table>

Delivery conditions for pocket size booklets/brochures/leaflets & posters: (posters: by set of 5)

Free of charge (beyond these figures, the requested quantities will be delivered upon receipt of a purchase order)

<table>
<thead>
<tr>
<th>Fleet size</th>
<th>1-3</th>
<th>4-10</th>
<th>11-20</th>
<th>21-30</th>
<th>31-40</th>
<th>41-50</th>
<th>> 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity supplied</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

This information is taken from SIL00-032 dated march 2004.

In the event of any conflict the text of the SIL applies

1 Videotape/1 CD is free of charge for each company. CDs are sold by set of 3 irrespective of fleet size.

Free of charge quantities are provided in accordance with fleet size. Additional quantities are at prices reflected in the “Airbus Customer Services Catalog” (Session 2, paragraph 2.1.2 of “Maintenance and Engineering”). A purchase order form is provided in the Catalog

Requests and associated purchase order are to be sent to the following address:

Fabienne Baron

AIRBUS S.A.S.

Engineering Services - SEE5 Department

1, rond-point Maurice-Bellonte

31707 BLADECAL Codes

France

Tel: +33 (0)5 61 93 44 70

Fax: +33 (0)5 61 93 44 25

fabienne.baron@airbus.com**
In May 2003, the International Civil Aviation Organization (ICAO) Council initiated a twofold Action Plan for the introduction of New Large Aircraft (NLA) into international civil aviation service.

The first step was to publish a Circular on NLA operations at existing airports to provide States with information concerning airports facilities and services, air traffic management and flight operations, which should be considered for accommodating NLA operations at existing airports. Secondly, a review will be undertaken of the current Annex 14, Aerodromes Volume I, code F provisions, including their underlying basis, considering the results of studies within and outside ICAO.

Most States which are willing to accommodate A380 operations at their airports, and noticeably States having potential alternate airports, may lack the background information and international working relationship which seems necessary for the application of the ICAO Circular on NLA operations. In line with the ICAO decision, an NLA Information Forum website (below) has been created, hosted by the European Civil Aviation Conference (ECAC). The aim of the website is to provide an easy, time-saving and informative access to all the documentation relevant to NLA. It will facilitate the exchange of information between States’ administrations, international organisations, airports, airlines, research organisations and industry.

This website will be further developed and kept up to date on a continuous basis:

A380 accommodation at airports

A380 ACCOMMODATION AT AIRPORTS

In May 2003, the International Civil Aviation Organization (ICAO) Council initiated a twofold Action Plan for the introduction of New Large Aircraft (NLA) into international civil aviation service.

The first step was to publish a Circular on NLA operations at existing airports to provide States with information concerning airports facilities and services, air traffic management and flight operations, which should be considered for accommodating NLA operations at existing airports. Secondly, a review will be undertaken of the current Annex 14, Aerodromes Volume I, code F provisions, including their underlying basis, considering the results of studies within and outside ICAO.

Most States which are willing to accommodate A380 operations at their airports, and noticeably States having potential alternate airports, may lack the background information and international working relationship which seems necessary for the application of the ICAO Circular on NLA operations. In line with the ICAO decision, an NLA Information Forum website (below) has been created, hosted by the European Civil Aviation Conference (ECAC). The aim of the website is to provide an easy, time-saving and informative access to all the documentation relevant to NLA. It will facilitate the exchange of information between States’ administrations, international organisations, airports, airlines, research organisations and industry.

This website will be further developed and kept up to date on a continuous basis:

A380 accommodation at airports

A380 ACCOMMODATION AT AIRPORTS

In May 2003, the International Civil Aviation Organization (ICAO) Council initiated a twofold Action Plan for the introduction of New Large Aircraft (NLA) into international civil aviation service.

The first step was to publish a Circular on NLA operations at existing airports to provide States with information concerning airports facilities and services, air traffic management and flight operations, which should be considered for accommodating NLA operations at existing airports. Secondly, a review will be undertaken of the current Annex 14, Aerodromes Volume I, code F provisions, including their underlying basis, considering the results of studies within and outside ICAO.

Most States which are willing to accommodate A380 operations at their airports, and noticeably States having potential alternate airports, may lack the background information and international working relationship which seems necessary for the application of the ICAO Circular on NLA operations. In line with the ICAO decision, an NLA Information Forum website (below) has been created, hosted by the European Civil Aviation Conference (ECAC). The aim of the website is to provide an easy, time-saving and informative access to all the documentation relevant to NLA. It will facilitate the exchange of information between States’ administrations, international organisations, airports, airlines, research organisations and industry.

This website will be further developed and kept up to date on a continuous basis:

A380 accommodation at airports

A380 ACCOMMODATION AT AIRPORTS

In May 2003, the International Civil Aviation Organization (ICAO) Council initiated a twofold Action Plan for the introduction of New Large Aircraft (NLA) into international civil aviation service.

The first step was to publish a Circular on NLA operations at existing airports to provide States with information concerning airports facilities and services, air traffic management and flight operations, which should be considered for accommodating NLA operations at existing airports. Secondly, a review will be undertaken of the current Annex 14, Aerodromes Volume I, code F provisions, including their underlying basis, considering the results of studies within and outside ICAO.

Most States which are willing to accommodate A380 operations at their airports, and noticeably States having potential alternate airports, may lack the background information and international working relationship which seems necessary for the application of the ICAO Circular on NLA operations. In line with the ICAO decision, an NLA Information Forum website (below) has been created, hosted by the European Civil Aviation Conference (ECAC). The aim of the website is to provide an easy, time-saving and informative access to all the documentation relevant to NLA. It will facilitate the exchange of information between States’ administrations, international organisations, airports, airlines, research organisations and industry.

This website will be further developed and kept up to date on a continuous basis:

A380 ACCOMMODATION AT AIRPORTS

In May 2003, the International Civil Aviation Organization (ICAO) Council initiated a twofold Action Plan for the introduction of New Large Aircraft (NLA) into international civil aviation service.

The first step was to publish a Circular on NLA operations at existing airports to provide States with information concerning airports facilities and services, air traffic management and flight operations, which should be considered for accommodating NLA operations at existing airports. Secondly, a review will be undertaken of the current Annex 14, Aerodromes Volume I, code F provisions, including their underlying basis, considering the results of studies within and outside ICAO.

Most States which are willing to accommodate A380 operations at their airports, and noticeably States having potential alternate airports, may lack the background information and international working relationship which seems necessary for the application of the ICAO Circular on NLA operations. In line with the ICAO decision, an NLA Information Forum website (below) has been created, hosted by the European Civil Aviation Conference (ECAC). The aim of the website is to provide an easy, time-saving and informative access to all the documentation relevant to NLA. It will facilitate the exchange of information between States’ administrations, international organisations, airports, airlines, research organisations and industry.

This website will be further developed and kept up to date on a continuous basis:

A380 ACCOMMODATION AT AIRPORTS

In May 2003, the International Civil Aviation Organization (ICAO) Council initiated a twofold Action Plan for the introduction of New Large Aircraft (NLA) into international civil aviation service.

The first step was to publish a Circular on NLA operations at existing airports to provide States with information concerning airports facilities and services, air traffic management and flight operations, which should be considered for accommodating NLA operations at existing airports. Secondly, a review will be undertaken of the current Annex 14, Aerodromes Volume I, code F provisions, including their underlying basis, considering the results of studies within and outside ICAO.

Most States which are willing to accommodate A380 operations at their airports, and noticeably States having potential alternate airports, may lack the background information and international working relationship which seems necessary for the application of the ICAO Circular on NLA operations. In line with the ICAO decision, an NLA Information Forum website (below) has been created, hosted by the European Civil Aviation Conference (ECAC). The aim of the website is to provide an easy, time-saving and informative access to all the documentation relevant to NLA. It will facilitate the exchange of information between States’ administrations, international organisations, airports, airlines, research organisations and industry.

This website will be further developed and kept up to date on a continuous basis:

100 years ago...

100 years ago, on 20 September 1904, the Wright brothers made the first human flight of more than one kilometre.

Only 25 years later Maitland and Hegenberger made the first successful flight from San Francisco to Hawaii in a Fokker F-VII trimotor. Their flight covered 3890km.

The following year, the Australian, Charles Kingsford-Smith, also in a Fokker F-VIIb with three Wright 230hp engines, made the first crossing of the Pacific Ocean from San Francisco to Brisbane and then on to Sydney. A flight of some 12,000km in three legs via Hawaii and Suva.

Three months later he made the first flight from Australia to New Zealand.

In the following two years, Kingsford-Smith continued to make the first round the world flight via India, London and New York arriving back at San Francisco in the same Fokker VIIIb. A round trip of some 54,000km.

Fokker at this time was the largest aircraft manufacturer in the world with factories in Europe and the USA. However the success did not last. Fokker was overtaken by Douglas Aircraft Company who had more modern products. However Douglas Aircraft became insolvent in 1967. Fokker were declared bankrupt in 1996 and the company was finally wound up in May 2004.
Customer Support

WORLDWIDE
Jean-Daniel Leroy
VP Customer Support
Tel: +33 (0)5 61 93 35 04
Fax: +33 (0)5 61 93 41 01

USA/CANADA
Philippe Bordes
Senior Director Customer Support
Tel: +1 (703) 834 3506
Fax: +1 (703) 834 3464

CHINA
Ron Bollekamp
Director Customer Support
Tel: +86 10 804 86161
Fax: +86 10 804 86162 / 63

RESIDENT CUSTOMER SUPPORT ADMINISTRATION
Jean-Philippe Guillon
Director
Resident Customer Support Administration
Tel: +33 (0)5 61 93 31 02
Fax: +33 (0)5 61 93 49 64

TECHNICAL, SPARES, TRAINING
Airbus has its main Spares centre in Hamburg, and regional warehouses in Frankfurt, Washington D.C., Beijing and Singapore.

Airbus operates 24 hours a day every day.
AOG Technical and Spares calls in North America should be addressed to:
Tel: +1 (703) 729 9000
Fax: +1 (703) 729 4373

AOG Technical and Spares calls outside North America should be addressed to:
Tel: +49 (40) 50 76 3001/3002/3003
Fax: +49 (40) 50 76 3011/3012/3013

Airbus Training centre Toulouse, France
Tel: +33 (0)5 61 93 33 33
Fax: +33 (0)5 61 93 20 94

Airbus Training subsidiaries
Miami, USA - Florida
Tel: +1 (305) 871 36 55
Fax: +1 (305) 871 46 49

Beijing, China
Tel: +86 10 80 48 63 40
Fax: +86 10 80 48 65 76

AIRBUS TECHNICAL AOG CENTER (AIRTAC)
Tel: +33 (0)5 61 93 34 00
Fax: +33 (0)5 61 93 35 00
support.airtac@airbus.com

WORLDWIDE
Jean-Daniel Leroy
VP Customer Support
Tel: +33 (0)5 61 93 35 04
Fax: +33 (0)5 61 93 41 01

USA/CANADA
Philippe Bordes
Senior Director Customer Support
Tel: +1 (703) 834 3506
Fax: +1 (703) 834 3464

CHINA
Ron Bollekamp
Director Customer Support
Tel: +86 10 804 86161
Fax: +86 10 804 86162 / 63

RESIDENT CUSTOMER SUPPORT ADMINISTRATION
Jean-Philippe Guillon
Director
Resident Customer Support Administration
Tel: +33 (0)5 61 93 31 02
Fax: +33 (0)5 61 93 49 64

TECHNICAL, SPARES, TRAINING
Airbus has its main Spares centre in Hamburg, and regional warehouses in Frankfurt, Washington D.C., Beijing and Singapore.

Airbus operates 24 hours a day every day.
AOG Technical and Spares calls in North America should be addressed to:
Tel: +1 (703) 729 9000
Fax: +1 (703) 729 4373

AOG Technical and Spares calls outside North America should be addressed to:
Tel: +49 (40) 50 76 3001/3002/3003
Fax: +49 (40) 50 76 3011/3012/3013

Airbus Training centre Toulouse, France
Tel: +33 (0)5 61 93 33 33
Fax: +33 (0)5 61 93 20 94

Airbus Training subsidiaries
Miami, USA - Florida
Tel: +1 (305) 871 36 55
Fax: +1 (305) 871 46 49

Beijing, China
Tel: +86 10 80 48 63 40
Fax: +86 10 80 48 65 76

AIRBUS TECHNICAL AOG CENTER (AIRTAC)
Tel: +33 (0)5 61 93 34 00
Fax: +33 (0)5 61 93 35 00
support.airtac@airbus.com
We could write pages and pages on how we can make your business information management more cost effective. But why hunt through endless filing cabinets when with Airbus On-Line Services you get rapid, up to date access to all our technical data? It's simple and easy to use. All subscribers have totally secure access to all their personalised details and you can even cut and paste any relevant information into your own documents. Don’t go through the long haul to find what you want, visit www.airbusworld.com instead.

Airbus. Setting the standards.